Do you want to publish a course? Click here

Stoichiometric Tuning of Lattice Flexibility and Na Diffusion in NaAlSiO4: Quasielastic Neutron Scattering Experiment and Ab-initio Molecular Dynamics Simulations

87   0   0.0 ( 0 )
 Added by R Mittal
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed quasielastic neutron scattering (QENS) experiments up to 1243 K and ab-initio molecular dynamics (AIMD) simulations to investigate the Na diffusion in various phases of NaAlSiO4 (NASO), namely, low-carnegieite (L-NASO; trigonal), high-carnegieite (H-NASO; cubic) and nepheline (N-NASO; hexagonal) phases. The QENS measurements reveal Na ions localized diffusion behavior in L-NASO and N-NASO, but long-range diffusion behavior in H-NASO. The AIMD simulation supplemented the QENS measurements and showed that excess Na ions in H-NASO enhance the host network flexibility and activate the AlO4/SiO4 tetrahedra rotational modes. These framework modes enable the long-range diffusion of Na across a pathway of interstitial sites. The simulations also show Na diffusion in Na-deficient N-NASO through vacant Na sites along the hexagonal c-axis.



rate research

Read More

We have performed quasielastic and inelastic neutron scattering (QENS and INS) measurements from 300 K to 1173 K to investigate the Na-diffusion and underlying host dynamics in Na2Ti3O7. The QENS data show that the Na atoms undergo localized jumps up to 1173 K. The ab-initio molecular dynamics (AIMD) simulations supplement the measurements and show 1-d long-ranged diffusion along the a-axis above 1500 K. The simulations indicate that the occupancy of the interstitial site is critical for long-range diffusion. The nudged-elastic-band (NEB) calculation confirmed that the activation energy barrier is lowest for diffusion along the a-axis. In the experimental phonon spectra the peaks at 10 and 14 meV are dominated by Na dynamics that disappear on warming, suggesting low-energy phonons significantly contribute to large Na vibrational amplitude at elevated temperatures that enhances the Na hopping probability. We have also calculated the mode Gruneisen parameters of the phonons and thereby calculated the volume thermal expansion coefficient, which is found to be in excellent agreement with available experimental data.
We have investigated the dynamics of Na ions in amorphous Na2Si2O5, a potential solid electrolyte material for Na-battery. We have employed quasielastic neutron scattering (QENS) technique in the amorphous Na2Si2O5 from 300 to 748 K to understand the diffusion pathways and relaxation timescales of Na atom dynamics. The microscopic analysis of the QENS data has been performed using ab-initio and classical molecular dynamics simulations (MD) to understand the Na-ion diffusion in the amorphous phase. Our experimental studies show that the traditional model, such as the Hall and Ross (H-R) model, fairly well describe the diffusion in the amorphous phase giving a mean jump length of ~3 {AA} and residence time about 9.1 picoseconds. Our MD simulations have indicated that the diffusion of Na+ ions occurs in the amorphous phase of Na2Si2O5 while that is not observed in the crystalline orthorhombic phase even up to 1100 K. The MD simulations have revealed that in the amorphous phase, due to different orientations of silicon polyhedral units, accessible pathways are opened up for Na+ diffusions. These pathways are not available in the crystalline phase of Na2Si2O5 due to rigid spatial arrangement of silicon polyhedral units.
We report the first measurements of the dynamics of liquid germanium (l-Ge) by quasi-elastic neutron scattering on time-of-flight and triple-axis spectrometers. These results are compared with simulation data of the structure and dynamics of l-Ge which have been obtained with ab initio density functional theory methods. The simulations accurately reproduce previous results from elastic and inelastic scattering experiments, as well as the q-dependence of the width of the quasi-elastic signal of the new experimental data. In order to understand some special features of the structure of the liquid we have also simulated amorphous Ge. Overall we find that the atomistic model represents accurately the average structure of real l-Ge as well as the time dependent structural fluctuations. The new quasi-elastic neutron scattering data allows us to investigate to what extent simple theoretical models can be used to describe diffusion in l-Ge.
We revisit the color-diffusion algorithm [P. C. Aeberhard et al., Phys. Rev. Lett. 108, 095901 (2012)] in nonequilibrium ab initio molecular dynamics (NE-AIMD), and propose a simple efficient approach for the estimation of monovacancy jump rates in crystalline solids at temperatures well below melting. Color-diffusion applied to monovacancy migration entails that one lattice atom (colored-atom) is accelerated toward the neighboring defect-site by an external constant force F. Considering bcc molybdenum between 1000 and 2800 K as a model system, NE-AIMD results show that the colored-atom jump rate k_{NE} increases exponentially with the force intensity F, up to F values far beyond the linear-fitting regime employed previously. Using a simple model, we derive an analytical expression which reproduces the observed k_{NE}(F) dependence on F. Equilibrium rates extrapolated by NE-AIMD results are in excellent agreement with those of unconstrained dynamics. The gain in computational efficiency achieved with our approach increases rapidly with decreasing temperatures, and reaches a factor of four orders of magnitude at the lowest temperature considered in the present study.
We present the structural and dynamical studies of layered vanadium pentaoxide (V2O5). The temperature dependent X-ray diffraction measurements reveal highly anisotropic and anomalous thermal expansion from 12 K to 853 K. The results do not show any evidence of structural phase transition or decomposition of {alpha}-V2O5, contrary to the previous transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) experiments. The inelastic neutron scattering measurements performed up to 673 K corroborate the result of our X-ray diffraction measurements. The analysis of the experimental data is carried out using ab-initio lattice dynamics calculation. The important role of van der-Waals dispersion and Hubbard interactions on the structure and dynamics is revealed through the ab-initio calculations. The calculated anisotropic thermal expansion behavior agrees well with temperature dependent X- ray diffraction. The mechanism of anisotropic thermal expansion and anisotropic linear compressibility is discussed in terms of calculated anisotropy in Gruneisen parameters and elastic coefficients. The calculated Gibbs free energy in various phases of V2O5 is used to understand the high pressure and temperature phase diagram of the compound. Softening of elastic constant (C66) with pressure suggests a possibility of shear mechanism for {alpha} to b{eta} phase transformation under pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا