Do you want to publish a course? Click here

Plasma response to resonant magnetic perturbations near rotation zero-crossing in low torque plasmas

76   0   0.0 ( 0 )
 Added by Pengcheng Xie
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasma response to resonant magnetic perturbations (RMPs) near the pedestal top is crucial for accessing edge localized modes (ELMs) suppression in tokamaks. Since radial location of rotation zero-crossing plays a key role in determining the threshold for field penetration of RMP, plasma response may be different in low input torque plasmas. In this work, the linear MHD code MARS-F is applied to reveal the dependence of plasma response to RMP on rotation zero-crossing by a scan of rotation profiles based on an EAST equilibrium. It is shown that the plasma response is enhanced when zero-crossing occurs near rational surfaces. The dependence of plasma response on the location of rotation zero-crossing is well fitted by a double Gaussian, indicating two effects in this enhancement. One is induced by rotation screening effect shown as a wide base (with a width around 10-20 krad/s), and the other is related to resistive singular layer effect characterized by a localized peak (with a width around 3-4 krad/s). The width of the peak scales with the resistive singular layer width. The plasma displacement suggests the response is tearing like when zero-crossing is within the singular layer, while it is kink like when zero-crossing is far from the layer. The enhancement of magnetic islands width at the peak is only around a factor of two, when the absolute value of local rotation is not larger than 10-20 krad/s. It is further confirmed in a modeling of plasma response in an EAST ELM suppression discharge. Though there is a zero-crossing in $Etimes B$ rotation but not in electron perpendicular rotation, no significant difference in plasma response is obtained using these two rotation profiles. This suggests that the rotation near pedestal top should not be far away from zero but may not be necessary to have zero-crossing for accessing ELM suppression.



rate research

Read More

122 - T. E. Evans 2018
A new class of static magnetohydrodynamic (MHD) magnetic island bifurcations is identified in rotating spherical tokamak plasmas during single- and two-fluid resistive MHD simulations. As the magnitude of an externally applied non-axisymmetric magnetic field perturbation is increased in these simulations, the internal flux surfaces that make up a sub-set of the resonant helical magnetic islands in the plasma gradually elongate and undergo heteroclinic bifurcations. The bifurcation results in the creation of a new set of hyperbolic-elliptic fixed points as predicted by the Poincare-Birkoff fixed point theorem. Field line calculations without including the resistive MHD plasma response to the applied perturbation field do not undergo this class of bifurcations indicating the importance of plasma self-organization in the bifurcation process.
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=3 to connected double null plasmas in the MAST tokamak produces up to a factor of 9 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. The effect of the RMPs is found to be scenario dependent. In one scenario the mitigation is only due to a large density pump out event and if the density is recovered by gas puffing a return to type I ELMs is observed. In another scenario sustained ELM mitigation can be achieved irrespective of the amount of fuelling. Despite a large scan of parameters complete ELM suppression has not been achieved. The results have been compared to modelling performed using either the vacuum approximation or including the plasma response. The requirement for a resonant condition, that is an optimum alignment of the perturbation with the plasma, has been confirmed by performing a scan in the pitch angle of the applied field.
The plasma response from an external n = 2 magnetic perturbation field in ASDEX Upgrade has been measured using mainly electron cyclotron emission (ECE) diagnostics and a rigid rotating field. To interpret ECE and ECE-imaging (ECE-I) measurements accurately, forward modeling of the radiation transport has been combined with ray tracing. The measured data is compared to synthetic ECE data generated from a 3D ideal magnetohydrodynamics (MHD) equilibrium calculated by VMEC. The measured amplitudes of the helical displacement around the low field side midplane are in reasonable agreement with the one from the synthetic VMEC diagnostics. Both exceed the prediction from the vacuum field calculations and indicate the presence of a kink response at the edge, which amplifies the perturbation. VMEC and MARS-F have been used to calculate the properties of this kink mode. The poloidal mode structure of the magnetic perturbation of this kink mode at the edge peaks at poloidal mode numbers larger than the resonant components |m| > |nq|, whereas the poloidal mode structure of its displacement is almost resonant |m| ~ |nq|. This is expected from ideal MHD in the proximity of rational surfaces. The displacement measured by ECE-I confirms this resonant response.
General three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The presence of singular current sheets indicates that, in the presence of non-zero resistivity, magnetic reconnection will ensue, leading to the formation of magnetic islands and potentially regions of stochastic field lines when islands overlap. Numerically resolving singular current sheets in the ideal MHD limit has been a significant challenge. This work presents numerical solutions of the Hahm-Kulsrud-Taylor (HKT) problem, which is a prototype for resonant singular current sheet formation. The HKT problem is solved by two codes: a Grad-Shafranov (GS) solver and the SPEC code. The GS solver has built-in nested flux surfaces with prescribed magnetic fluxes. The SPEC code implements multi-region relaxed magnetohydrodynamics (MRxMHD), where the solution relaxes to a Taylor state in each region while maintaining force balance across the interfaces between regions. As the number of regions increases, the MRxMHD solution approaches the ideal MHD solution assuming a continuum of nested flux surfaces. We demonstrate excellent agreement between the numerical solutions obtained from the two codes through a thorough convergence study.
Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا