Do you want to publish a course? Click here

KI-BERT: Infusing Knowledge Context for Better Language and Domain Understanding

101   0   0.0 ( 0 )
 Added by Keyur Faldu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Contextualized entity representations learned by state-of-the-art transformer-based language models (TLMs) like BERT, GPT, T5, etc., leverage the attention mechanism to learn the data context from training data corpus. However, these models do not use the knowledge context. Knowledge context can be understood as semantics about entities and their relationship with neighboring entities in knowledge graphs. We propose a novel and effective technique to infuse knowledge context from multiple knowledge graphs for conceptual and ambiguous entities into TLMs during fine-tuning. It projects knowledge graph embeddings in the homogeneous vector-space, introduces new token-types for entities, aligns entity position ids, and a selective attention mechanism. We take BERT as a baseline model and implement the Knowledge-Infused BERT by infusing knowledge context from ConceptNet and WordNet, which significantly outperforms BERT and other recent knowledge-aware BERT variants like ERNIE, SenseBERT, and BERT_CS over eight different subtasks of GLUE benchmark. The KI-BERT-base model even significantly outperforms BERT-large for domain-specific tasks like SciTail and academic subsets of QQP, QNLI, and MNLI.



rate research

Read More

Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be effectively transferred to a small student Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture he general-domain as well as the task-specific knowledge in BERT. TinyBERT with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERTBASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT with 4 layers is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only about 28% parameters and about 31% inference time of them. Moreover, TinyBERT with 6 layers performs on-par with its teacher BERTBASE.
Pre-trained language models such as BERT have achieved great success in a broad range of natural language processing tasks. However, BERT cannot well support E-commerce related tasks due to the lack of two levels of domain knowledge, i.e., phrase-level and product-level. On one hand, many E-commerce tasks require an accurate understanding of domain phrases, whereas such fine-grained phrase-level knowledge is not explicitly modeled by BERTs training objective. On the other hand, product-level knowledge like product associations can enhance the language modeling of E-commerce, but they are not factual knowledge thus using them indiscriminately may introduce noise. To tackle the problem, we propose a unified pre-training framework, namely, E-BERT. Specifically, to preserve phrase-level knowledge, we introduce Adaptive Hybrid Masking, which allows the model to adaptively switch from learning preliminary word knowledge to learning complex phrases, based on the fitting progress of two modes. To utilize product-level knowledge, we introduce Neighbor Product Reconstruction, which trains E-BERT to predict a products associated neighbors with a denoising cross attention layer. Our investigation reveals promising results in four downstream tasks, i.e., review-based question answering, aspect extraction, aspect sentiment classification, and product classification.
97 - Chen Liu , Su Zhu , Zijian Zhao 2020
Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issue, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.
Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it into smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.
Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا