Do you want to publish a course? Click here

An Empirical Bayesian Approach to Limb-darkening in Modeling WASP-121b Transit Light Curves

85   0   0.0 ( 0 )
 Added by Fan Yang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel, iterative method using an empirical Bayesian approach for modeling the limb darkened WASP-121b transit from the TESS light curve. Our method is motivated by the need to improve $R_{p}/R_{ast}$ estimates for exoplanet atmosphere modeling, and is particularly effective with the limb darkening (LD) quadratic law requiring no prior central value from stellar atmospheric models. With the non-linear LD law, the method has all the advantages of not needing atmospheric models but does not converge. The iterative method gives a different $R_{p}/R_{ast}$ for WASP-121b at a significance level of 1$sigma$ when compared with existing non-iterative methods. To assess the origins and implications of this difference, we generate and analyze light curves with known values of the limb darkening coefficients (LDCs). We find that non-iterative modeling with LDC priors from stellar atmospheric models results in an inconsistent $R_{p}/R_{ast}$ at 1.5$sigma$ level when the known LDC values are as those previously found when modeling real data by the iterative method. In contrast, the LDC values from the iterative modeling yields the correct value of $R_{p}/R_{ast}$ to within 0.25$sigma$. For more general cases with different known inputs, Monte Carlo simulations show that the iterative method obtains unbiased LDCs and correct $R_{p}/R_{ast}$ to within a significance level of 0.3$sigma$. Biased LDC priors can cause biased LDC posteriors and lead to bias in the $R_{p}/R_{ast}$ of up to 0.82$%$, 2.5$sigma$ for the quadratic law and 0.32$%$, 1.0$sigma$ for the non-linear law. Our improvement in $R_{p}/R_{ast}$ estimation is important when analyzing exoplanet atmospheres.

rate research

Read More

Although WASP-14 b is one of the most massive and densest exoplanets on a tight and eccentric orbit, it has never been a target of photometric follow-up monitoring or dedicated observing campaigns. We report on new photometric transit observations of WASP-14 b obtained within the framework of Transit Timing Variations @ Young Exoplanet Transit Initiative (TTV@YETI). We collected 19 light-curves of 13 individual transit events using six telescopes located in five observatories distributed in Europe and Asia. From light curve modelling, we determined the planetary, stellar, and geometrical properties of the system and found them in agreement with the values from the discovery paper. A test of the robustness of the transit times revealed that in case of a non-reproducible transit shape the uncertainties may be underestimated even with a wavelet-based error estimation methods. For the timing analysis we included two publicly available transit times from 2007 and 2009. The long observation period of seven years (2007-2013) allowed us to refine the transit ephemeris. We derived an orbital period 1.2 s longer and 10 times more precise than the one given in the discovery paper. We found no significant periodic signal in the timing-residuals and, hence, no evidence for TTV in the system.
Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. We present a conceptually simple technique to detect inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals compared to a standard symmetric model. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b and HD209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well-suited for this method since it allows for a very high time resolution. We do not find any statistically sound cloud signature in the data of the considered planets. For HAT-P-7b, a tentative detection of an asymmetric cloud cover is found, consistent with analysis of the optical phase curve. Based on Bayesian probability arguments, a symmetric model with an offset in the transit ephemeris remains, however, the most viable model. Still, this work demonstrates that for suitable targets, namely low-gravity planets around bright stars, the method can be used to constrain cloud cover characteristics and is thus a helpful additional tool to study exoplanetary atmospheres.
The TASTE project is searching for low-mass planets with the Transit Timing Variation (TTV) technique, by gathering high-precision, short-cadence light curves for a selected sample of transiting exoplanets. It has been claimed that the hot Jupiter WASP-3b could be perturbed by a second planet. Presenting eleven new light curves (secured at the IAC80 and UDEM telescopes) and re-analyzing thirty-eight archival light curves in a homogeneous way, we show that new data do not confirm the previously claimed TTV signal. However, we bring evidence that measurements are not consistent with a constant orbital period, though no significant periodicity can be detected. Additional dynamical modeling and follow-up observations are planned to constrain the properties of the perturber or to put upper limits to it. We provide a refined ephemeris for WASP-3b and improved orbital/physical parameters. A contact eclipsing binary, serendipitously discovered among field stars, is reported here for the first time.
The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189b, a $M_P approx 2 M_J$ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of $dF = 87.9 pm 4.3$ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of $3435 pm 27$K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a $sim25%$ deeper transit compared to the discovery paper and updating the radius of WASP-189b to $1.619pm0.021 R_J$. We further measured the projected orbital obliquity to be $lambda = 86.4^{+2.9}_{-4.4}$deg, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of $Psi = 85.4pm4.3$deg. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V=6.6 mag star, and using a one-hour binning, we obtain a residual RMS between 10 and 17ppm on the individual light curves, and 5.7ppm when combining the four visits.
We present TransitFit, an open-source Python~3 package designed to fit exoplanetary transit light-curves for transmission spectroscopy studies (Available at https://github.com/joshjchayes/TransitFit and https://github.com/spearnet/TransitFit, with documentation at https://transitfit.readthedocs.io/). TransitFit employs nested sampling to offer efficient and robust multi-epoch, multi-wavelength fitting of transit data obtained from one or more telescopes. TransitFit allows per-telescope detrending to be performed simultaneously with parameter fitting, including the use of user-supplied detrending alogorithms. Host limb darkening can be fitted either independently (uncoupled) for each filter or combined (coupled) using prior conditioning from the PHOENIX stellar atmosphere models. For this TransitFit uses the Limb Darkening Toolkit (LDTk) together with filter profiles, including user-supplied filter profiles. We demonstrate the application of TransitFit in three different contexts. First, we model SPEARNET broadband optical data of the low-density hot-Neptune WASP-127~b. The data were obtained from a globally-distributed network of 0.5m--2.4m telescopes. We find clear improvement in our broadband results using the coupled mode over uncoupled mode, when compared against the higher spectral resolution GTC/OSIRIS transmission spectrum obtained by Chen et al. (2018). Using TransitFit, we fit 26 transit observations by TESS to recover improved ephemerides of the hot-Jupiter WASP-91~b and a transit depth determined to a precision of 170~ppm. Finally, we use TransitFit to conduct an investigation into the contested presence of TTV signatures in WASP-126~b using 126 transits observed by TESS, concluding that there is no statistically significant evidence for such signatures from observations spanning 31 TESS sectors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا