Do you want to publish a course? Click here

GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds

97   0   0.0 ( 0 )
 Added by Arun Mallya
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present GANcraft, an unsupervised neural rendering framework for generating photorealistic images of large 3D block worlds such as those created in Minecraft. Our method takes a semantic block world as input, where each block is assigned a semantic label such as dirt, grass, or water. We represent the world as a continuous volumetric function and train our model to render view-consistent photorealistic images for a user-controlled camera. In the absence of paired ground truth real images for the block world, we devise a training technique based on pseudo-ground truth and adversarial training. This stands in contrast to prior work on neural rendering for view synthesis, which requires ground truth images to estimate scene geometry and view-dependent appearance. In addition to camera trajectory, GANcraft allows user control over both scene semantics and output style. Experimental results with comparison to strong baselines show the effectiveness of GANcraft on this novel task of photorealistic 3D block world synthesis. The project website is available at https://nvlabs.github.io/GANcraft/ .



rate research

Read More

107 - Boyun Li , Yijie Lin , Xiao Liu 2021
Image hazing aims to render a hazy image from a given clean one, which could be applied to a variety of practical applications such as gaming, filming, photographic filtering, and image dehazing. To generate plausible haze, we study two less-touched but challenging problems in hazy image rendering, namely, i) how to estimate the transmission map from a single image without auxiliary information, and ii) how to adaptively learn the airlight from exemplars, i.e., unpaired real hazy images. To this end, we propose a neural rendering method for image hazing, dubbed as HazeGEN. To be specific, HazeGEN is a knowledge-driven neural network which estimates the transmission map by leveraging a new prior, i.e., there exists the structure similarity (e.g., contour and luminance) between the transmission map and the input clean image. To adaptively learn the airlight, we build a neural module based on another new prior, i.e., the rendered hazy image and the exemplar are similar in the airlight distribution. To the best of our knowledge, this could be the first attempt to deeply rendering hazy images in an unsupervised fashion. Comparing with existing haze generation methods, HazeGEN renders the hazy images in an unsupervised, learnable, and controllable manner, thus avoiding the labor-intensive efforts in paired data collection and the domain-shift issue in haze generation. Extensive experiments show the promising performance of our method comparing with some baselines in both qualitative and quantitative comparisons. The code will be released on GitHub after acceptance.
Recent works have shown exciting results in unsupervised image de-rendering -- learning to decompose 3D shape, appearance, and lighting from single-image collections without explicit supervision. However, many of these assume simplistic material and lighting models. We propose a method, termed RADAR, that can recover environment illumination and surface materials from real single-image collections, relying neither on explicit 3D supervision, nor on multi-view or multi-light images. Specifically, we focus on rotationally symmetric artefacts that exhibit challenging surface properties including specular reflections, such as vases. We introduce a novel self-supervised albedo discriminator, which allows the model to recover plausible albedo without requiring any ground-truth during training. In conjunction with a shape reconstruction module exploiting rotational symmetry, we present an end-to-end learning framework that is able to de-render the worlds revolutionary artefacts. We conduct experiments on a real vase dataset and demonstrate compelling decomposition results, allowing for applications including free-viewpoint rendering and relighting.
Differentiable rendering has paved the way to training neural networks to perform inverse graphics tasks such as predicting 3D geometry from monocular photographs. To train high performing models, most of the current approaches rely on multi-view imagery which are not readily available in practice. Recent Generative Adversarial Networks (GANs) that synthesize images, in contrast, seem to acquire 3D knowledge implicitly during training: object viewpoints can be manipulated by simply manipulating the latent codes. However, these latent codes often lack further physical interpretation and thus GANs cannot easily be inverted to perform explicit 3D reasoning. In this paper, we aim to extract and disentangle 3D knowledge learned by generative models by utilizing differentiable renderers. Key to our approach is to exploit GANs as a multi-view data generator to train an inverse graphics network using an off-the-shelf differentiable renderer, and the trained inverse graphics network as a teacher to disentangle the GANs latent code into interpretable 3D properties. The entire architecture is trained iteratively using cycle consistency losses. We show that our approach significantly outperforms state-of-the-art inverse graphics networks trained on existing datasets, both quantitatively and via user studies. We further showcase the disentangled GAN as a controllable 3D neural renderer, complementing traditional graphics renderers.
In this paper, we propose a generic neural-based hair rendering pipeline that can synthesize photo-realistic images from virtual 3D hair models. Unlike existing supervised translation methods that require model-level similarity to preserve consistent structure representation for both real images and fake renderings, our method adopts an unsupervised solution to work on arbitrary hair models. The key component of our method is a shared latent space to encode appearance-invariant structure information of both domains, which generates realistic renderings conditioned by extra appearance inputs. This is achieved by domain-specific pre-disentangled structure representation, partially shared domain encoder layers and a structure discriminator. We also propose a simple yet effective temporal conditioning method to enforce consistency for video sequence generation. We demonstrate the superiority of our method by testing it on a large number of portraits and comparing it with alternative baselines and state-of-the-art unsupervised image translation methods.
Neural signed distance functions (SDFs) are emerging as an effective representation for 3D shapes. State-of-the-art methods typically encode the SDF with a large, fixed-size neural network to approximate complex shapes with implicit surfaces. Rendering with these large networks is, however, computationally expensive since it requires many forward passes through the network for every pixel, making these representations impractical for real-time graphics. We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs, while achieving state-of-the-art geometry reconstruction quality. We represent implicit surfaces using an octree-based feature volume which adaptively fits shapes with multiple discrete levels of detail (LODs), and enables continuous LOD with SDF interpolation. We further develop an efficient algorithm to directly render our novel neural SDF representation in real-time by querying only the necessary LODs with sparse octree traversal. We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works. Furthermore, it produces state-of-the-art reconstruction quality for complex shapes under both 3D geometric and 2D image-space metrics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا