Do you want to publish a course? Click here

Universal properties of active membranes

151   0   0.0 ( 0 )
 Added by Francesco Cagnetta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We put forward a general field theory for membranes with embedded activators and analyse their critical properties using renormalization group techniques. Depending on the membrane-activator coupling, we find a crossover between acoustic and diffusive scaling regimes, with mean-field dynamical critical exponents z = 1 and 2 respectively. We argue that the acoustic scaling, which is exact in all spatial dimensions, is a suitable candidate for the universal description of the spatiotemporal patterns observed at the leading edge of motile cells. Furthermore, one-loop corrections to the diffusive mean-field exponents reveal universal behaviour distinct from the Kardar-Parisi-Zhang scaling of passive interfaces and signs of strong-coupling behaviour.



rate research

Read More

Motivated by experimental observations of patterning at the leading edge of motile eukaryotic cells, we introduce a general model for the dynamics of nearly-flat fluid membranes driven from within by an ensemble of activators. We include, in particular, a kinematic coupling between activator density and membrane slope which generically arises whenever the membrane has a non-vanishing normal speed. We unveil the phase diagram of the model by means of a perturbative field-theoretical renormalization group analysis. Due to the aforementioned kinematic coupling the natural dynamical scaling is acoustic, that is the dynamical critical exponent is 1. However, as soon as the the normal velocity of the membrane is tuned to zero, the system crosses over to diffusive dynamic scaling in mean field. Distinct critical points can be reached depending on how the limit of vanishing velocity is realised: in each of them corrections to scaling due to nonlinear coupling terms must be taken into accounts. The detailed analysis of these critical points reveals novel scaling regimes wich can be accessed with perturbative methods, together with signs of strong coupling behaviour, which establishes a promising ground for further non-perturbative calculations. Our results unify several previous studies on the dynamics of active membrane, while also identifying nontrivial scaling regimes which cannot be captured by passive theories of fluctuating interfaces and are relevant for the physics of living membranes.
We revisit the universal behavior of crystalline membranes at and below the crumpling transition, which pertains to the mechanical properties of important soft and hard matter materials, such as the cytoskeleton of red blood cells or graphene. Specifically, we perform large-scale Monte Carlo simulations of a triangulated two-dimensional phantom network which is freely fluctuating in three-dimensional space. We obtain a continuous crumpling transition characterized by critical exponents which we estimate accurately through the use of finite-size techniques. By controlling the scaling corrections, we additionally compute with high accuracy the asymptotic value of the Poisson ratio in the flat phase, thus characterizing the auxetic properties of this class of systems. We obtain agreement with the value which is universally expected for polymerized membranes with a fixed connectivity.
Collective motion is often modeled within the framework of active fluids, where the constituent active particles, when interactions with other particles are switched off, perform normal diffusion at long times. However, in biology, single-particle superdiffusion and fat-tailed displacement statistics are also widespread. The collective properties of interacting systems exhibiting such anomalous diffusive dynamics, which we call active Levy matter, cannot be captured by current active fluid theories. Here, we formulate a hydrodynamic theory of active Levy matter by coarse-graining a microscopic model of aligning polar active particles that perform superdiffusion akin to Levy flights. Applying a linear stability analysis on the hydrodynamic equations at the onset of collective motion, we find that, in contrast to its conventional counterpart, the order-disorder transition can become critical. We then estimate the corresponding critical exponents by finite size scaling analysis of numerical simulations. Our work highlights the novel physics in active matter that integrates both anomalous diffusive motility and inter-particle interactions.
We utilize a generalized Irving-Kirkwood procedure to derive the hydrodynamic equations of an active matter suspension with internal structure and driven by internal torque. The internal structure and torque of the active Brownian particles give rise to a balance law for internal angular momentum density, making the hydrodynamic description a polar theory of continuum mechanics. We derive exact microscopic expressions for the stress tensor, couple stress tensor, internal energy density, and heat flux vector. Unlike passive matter, the symmetry of the stress tensor is broken explicitly due to active internal torque and the antisymmetric component drives the internal angular momentum density. These results provide a molecular basis to understand the transport characteristics and collectively provide a strategy to develop the theory of linear irreversible thermodynamics of active matter.
We study the dependence of the surface tension of a fluid interface on the density profile of a third suspended phase. By means of an approximated model for the binary mixture and of a perturbative approach we derive close formulas for the free energy of the system and for the surface tension of the interface. Our results show a remarkable non-monotonous dependence of the surface tension on the peak of the density of the suspended phase. Our results also predict the local value of the surface tension in the case in which the density of the suspended phase is not homogeneous along the interface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا