Do you want to publish a course? Click here

OneVision: Centralized to Distributed Controller Synthesis with Delay Compensation

334   0   0.0 ( 0 )
 Added by Jiayi Wei
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a new algorithm to simplify the controller development for distributed robotic systems subject to external observations, disturbances, and communication delays. Unlike prior approaches that propose specialized solutions to handling communication latency for specific robotic applications, our algorithm uses an arbitrary centralized controller as the specification and automatically generates distributed controllers with communication management and delay compensation. We formulate our goal as nonlinear optimal control -- using a regret minimizing objective that measures how much the distributed agents behave differently from the delay-free centralized response -- and solve for optimal actions w.r.t. local estimations of this objective using gradient-based optimization. We analyze our proposed algorithms behavior under a linear time-invariant special case and prove that the closed-loop dynamics satisfy a form of input-to-state stability w.r.t. unexpected disturbances and observations. Our experimental results on both simulated and real-world robotic tasks demonstrate the practical usefulness of our approach and show significant improvement over several baseline approaches.



rate research

Read More

We introduce a general mathematical framework for distributed algorithms, and a monotonicity property frequently satisfied in application. These properties are leveraged to provide finite-time guarantees for converging algorithms, suited for use in the absence of a central authority. A central application is to consensus algorithms in higher dimension. These pursuits motivate a new peer to peer convex hull algorithm which we demonstrate to be an instantiation of the described theory. To address the diversity of convex sets and the potential computation and communication costs of knowing such sets in high dimension, a lightweight norm based stopping criteria is developed. More explicitly, we give a distributed algorithm that terminates in finite time when applied to consensus problems in higher dimensions and guarantees the convergence of the consensus algorithm in norm, within any given tolerance. Applications to consensus least squared estimation and distributed function determination are developed. The practical utility of the algorithm is illustrated through MATLAB simulations.
This paper identifies a property of delay-robustness in distributed supervisory control of discrete-event systems (DES) with communication delays. In previous work a distributed supervisory control problem has been investigated on the assumption that inter-agent communications take place with negligible delay. From an applications viewpoint it is desirable to relax this constraint and identify communicating distributed controllers which are delay-robust, namely logically equivalent to their delay-free counterparts. For this we introduce inter-agent channels modeled as 2-state automata, compute the overall system behavior, and present an effective computational test for delay-robustness. From the test it typically results that the given delay-free distributed control is delay-robust with respect to certain communicated events, but not for all, thus distinguishing events which are not delay-critical from those that are. The approach is illustrated by a workcell model with three communicating agents.
Non-signalized intersection is a typical and common scenario for connected and automated vehicles (CAVs). How to balance safety and efficiency remains difficult for researchers. To improve the original Responsibility Sensitive Safety (RSS) driving strategy on the non-signalized intersection, we propose a new strategy in this paper, based on right-of-way assignment (RWA). The performances of RSS strategy, cooperative driving strategy, and RWA based strategy are tested and compared. Testing results indicate that our strategy yields better traffic efficiency than RSS strategy, but not satisfying as the cooperative driving strategy due to the limited range of communication and the lack of long-term planning. However, our new strategy requires much fewer communication costs among vehicles.
Voronoi coverage control is a particular problem of importance in the area of multi-robot systems, which considers a network of multiple autonomous robots, tasked with optimally covering a large area. This is a common task for fleets of fixed-wing Unmanned Aerial Vehicles (UAVs), which are described in this work by a unicycle model with constant forward-speed constraints. We develop event-based control/communication algorithms to relax the resource requirements on wireless communication and control actuators, an important feature for battery-driven or otherwise energy-constrained systems. To overcome the drawback that the event-triggered algorithm requires continuous measurement of system states, we propose a self-triggered algorithm to estimate the next triggering time. Hardware experiments illustrate the theoretical results.
We address the problem of maintaining resource availability in a networked multi-robot team performing distributed tracking of unknown number of targets in an environment of interest. Based on our model, robots are equipped with sensing and computational resources enabling them to cooperatively track a set of targets in an environment using a distributed Probability Hypothesis Density (PHD) filter. We use the trace of a robots sensor measurement noise covariance matrix to quantify its sensing quality. While executing the tracking task, if a robot experiences sensor quality degradation, then robot teams communication network is reconfigured such that the robot with the faulty sensor may share information with other robots to improve the teams target tracking ability without enforcing a large change in the number of active communication links. A central system which monitors the team executes all the network reconfiguration computations. We consider two different PHD fusion methods in this paper and propose four different Mixed Integer Semi-Definite Programming (MISDP) formulations (two formulations for each PHD fusion method) to accomplish our objective. All four MISDP formulations are validated in simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا