Do you want to publish a course? Click here

Podracer architectures for scalable Reinforcement Learning

125   0   0.0 ( 0 )
 Added by Matteo Hessel
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Supporting state-of-the-art AI research requires balancing rapid prototyping, ease of use, and quick iteration, with the ability to deploy experiments at a scale traditionally associated with production systems.Deep learning frameworks such as TensorFlow, PyTorch and JAX allow users to transparently make use of accelerators, such as TPUs and GPUs, to offload the more computationally intensive parts of training and inference in modern deep learning systems. Popular training pipelines that use these frameworks for deep learning typically focus on (un-)supervised learning. How to best train reinforcement learning (RL) agents at scale is still an active research area. In this report we argue that TPUs are particularly well suited for training RL agents in a scalable, efficient and reproducible way. Specifically we describe two architectures designed to make the best use of the resources available on a TPU Pod (a special configuration in a Google data center that features multiple TPU devices connected to each other by extremely low latency communication channels).

rate research

Read More

Bayesian inference over the reward presents an ideal solution to the ill-posed nature of the inverse reinforcement learning problem. Unfortunately current methods generally do not scale well beyond the small tabular setting due to the need for an inner-loop MDP solver, and even non-Bayesian methods that do themselves scale often require extensive interaction with the environment to perform well, being inappropriate for high stakes or costly applications such as healthcare. In this paper we introduce our method, Approximate Variational Reward Imitation Learning (AVRIL), that addresses both of these issues by jointly learning an approximate posterior distribution over the reward that scales to arbitrarily complicated state spaces alongside an appropriate policy in a completely offline manner through a variational approach to said latent reward. Applying our method to real medical data alongside classic control simulations, we demonstrate Bayesian reward inference in environments beyond the scope of current methods, as well as task performance competitive with focused offline imitation learning algorithms.
Multi-simulator training has contributed to the recent success of Deep Reinforcement Learning by stabilizing learning and allowing for higher training throughputs. We propose Gossip-based Actor-Learner Architectures (GALA) where several actor-learners (such as A2C agents) are organized in a peer-to-peer communication topology, and exchange information through asynchronous gossip in order to take advantage of a large number of distributed simulators. We prove that GALA agents remain within an epsilon-ball of one-another during training when using loosely coupled asynchronous communication. By reducing the amount of synchronization between agents, GALA is more computationally efficient and scalable compared to A2C, its fully-synchronous counterpart. GALA also outperforms A2C, being more robust and sample efficient. We show that we can run several loosely coupled GALA agents in parallel on a single GPU and achieve significantly higher hardware utilization and frame-rates than vanilla A2C at comparable power draws.
Cancer is a complex disease, the understanding and treatment of which are being aided through increases in the volume of collected data and in the scale of deployed computing power. Consequently, there is a growing need for the development of data-driven and, in particular, deep learning methods for various tasks such as cancer diagnosis, detection, prognosis, and prediction. Despite recent successes, however, designing high-performing deep learning models for nonimage and nontext cancer data is a time-consuming, trial-and-error, manual task that requires both cancer domain and deep learning expertise. To that end, we develop a reinforcement-learning-based neural architecture search to automate deep-learning-based predictive model development for a class of representative cancer data. We develop custom building blocks that allow domain experts to incorporate the cancer-data-specific characteristics. We show that our approach discovers deep neural network architectures that have significantly fewer trainable parameters, shorter training time, and accuracy similar to or higher than those of manually designed architectures. We study and demonstrate the scalability of our approach on up to 1,024 Intel Knights Landing nodes of the Theta supercomputer at the Argonne Leadership Computing Facility.
In this paper, we study the problem of learning vision-based dynamic manipulation skills using a scalable reinforcement learning approach. We study this problem in the context of grasping, a longstanding challenge in robotic manipulation. In contrast to static learning behaviors that choose a grasp point and then execute the desired grasp, our method enables closed-loop vision-based control, whereby the robot continuously updates its grasp strategy based on the most recent observations to optimize long-horizon grasp success. To that end, we introduce QT-Opt, a scalable self-supervised vision-based reinforcement learning framework that can leverage over 580k real-world grasp attempts to train a deep neural network Q-function with over 1.2M parameters to perform closed-loop, real-world grasping that generalizes to 96% grasp success on unseen objects. Aside from attaining a very high success rate, our method exhibits behaviors that are quite distinct from more standard grasping systems: using only RGB vision-based perception from an over-the-shoulder camera, our method automatically learns regrasping strategies, probes objects to find the most effective grasps, learns to reposition objects and perform other non-prehensile pre-grasp manipulations, and responds dynamically to disturbances and perturbations.
Kernels derived from deep neural networks (DNNs) in the infinite-width provide not only high performance in a range of machine learning tasks but also new theoretical insights into DNN training dynamics and generalization. In this paper, we extend the family of kernels associated with recurrent neural networks (RNNs), which were previously derived only for simple RNNs, to more complex architectures that are bidirectional RNNs and RNNs with average pooling. We also develop a fast GPU implementation to exploit its full practical potential. While RNNs are typically only applied to time-series data, we demonstrate that classifiers using RNN-based kernels outperform a range of baseline methods on 90 non-time-series datasets from the UCI data repository.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا