SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels


Abstract in English

We study the problem of labelling effort for semantic segmentation of large-scale 3D point clouds. Existing works usually rely on densely annotated point-level semantic labels to provide supervision for network training. However, in real-world scenarios that contain billions of points, it is impractical and extremely costly to manually annotate every single point. In this paper, we first investigate whether dense 3D labels are truly required for learning meaningful semantic representations. Interestingly, we find that the segmentation performance of existing works only drops slightly given as few as 1% of the annotations. However, beyond this point (e.g. 1 per thousand and below) existing techniques fail catastrophically. To this end, we propose a new weak supervision method to implicitly augment the total amount of available supervision signals, by leveraging the semantic similarity between neighboring points. Extensive experiments demonstrate that the proposed Semantic Query Network (SQN) achieves state-of-the-art performance on six large-scale open datasets under weak supervision schemes, while requiring only 1000x fewer labeled points for training. The code is available at https://github.com/QingyongHu/SQN.

Download