The explosion of user-generated content (UGC)--e.g. social media posts, comments, and reviews--has motivated the development of NLP applications tailored to these types of informal texts. Prevalent among these applications have been sentiment analysis and machine translation (MT). Grounded in the observation that UGC features highly idiomatic, sentiment-charged language, we propose a decoder-side approach that incorporates automatic sentiment scoring into the MT candidate selection process. We train separate English and Spanish sentiment classifiers, then, using n-best candidates generated by a baseline MT model with beam search, select the candidate that minimizes the absolute difference between the sentiment score of the source sentence and that of the translation, and perform a human evaluation to assess the produced translations. Unlike previous work, we select this minimally divergent translation by considering the sentiment scores of the source sentence and translation on a continuous interval, rather than using e.g. binary classification, allowing for more fine-grained selection of translation candidates. The results of human evaluations show that, in comparison to the open-source MT baseline model on top of which our sentiment-based pipeline is built, our pipeline produces more accurate translations of colloquial, sentiment-heavy source texts.