Do you want to publish a course? Click here

Efficient Path Planning in Narrow Passages via Closed-Form Minkowski Operations

89   0   0.0 ( 0 )
 Added by Sipu Ruan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Path planning has long been one of the major research areas in robotics, with PRM and RRT being two of the most effective classes of path planners. Though generally very efficient, these sampling-based planners can become computationally expensive in the important case of narrow passages. This paper develops a path planning paradigm specifically formulated for narrow passage problems. The core is based on planning for rigid-body robots encapsulated by unions of ellipsoids. The environmental features are enclosed geometrically using convex differentiable surfaces (e.g., superquadrics). The main benefit of doing this is that configuration-space obstacles can be parameterized explicitly in closed form, thereby allowing prior knowledge to be used to avoid sampling infeasible configurations. Then, by characterizing a tight volume bound for multiple ellipsoids, robot transitions involving rotations are guaranteed to be collision-free without traditional collision detection. Furthermore, combining the stochastic sampling strategy, the proposed planning framework can be extended to solving higher dimensional problems in which the robot has a moving base and articulated appendages. Benchmark results show that, remarkably, the proposed framework outperforms the popular sampling-based planners in terms of computational time and success rate in finding a path through narrow corridors and in higher dimensional configuration spaces.



rate research

Read More

Collision avoidance is an essential concern for the autonomous operations of aerial vehicles in dynamic and uncertain urban environments. This paper introduces a risk-bounded path planning algorithm for unmanned aerial vehicles (UAVs) operating in such environments. This algorithm advances the rapidly-exploring random tree (RRT) with chance constraints to generate probabilistically guaranteed collision-free paths that are robust to vehicle and environmental obstacle uncertainties. Assuming all uncertainties follow Gaussian distributions, the chance constraints are established through converting dynamic and probabilistic constraints into equivalent static and deterministic constraints. By incorporating chance constraints into the RRT algorithm, the proposed algorithm not only inherits the computational advantage of sampling-based algorithms but also guarantees a probabilistically feasible flying zone at every time step. Simulation results show the promising performance of the proposed algorithm.
Providing a higher level of decision autonomy and accompanying prompt changes of an uncertain environment is a true challenge of AUVs autonomous operations. The proceeding approach introduces a robust reactive structure that accommodates an AUVs mission planning, task-time management in a top level and incorporates environmental changes by a synchronic motion planning in a lower level. The proposed architecture is developed in a hierarchal modular format and a bunch of evolutionary algorithms are employed by each module to investigate the efficiency and robustness of the structure in different mission scenarios while water current data, uncertain static-mobile/motile obstacles, and vehicles Kino-dynamic constraints are taken into account. The motion planner is facilitated with online re-planning capability to refine the vehicles trajectory based on local variations of the environment. A small computational load is devoted for re-planning procedure since the upper layer mission planner renders an efficient overview of the operation area that AUV should fly thru. Numerical simulations are carried out to investigate robustness and performance of the architecture in different situations of a real-world underwater environment. Analysis of the simulation results claims the remarkable capability of the proposed model in accurate mission task-time-threat management while guarantying a secure deployment during the mission.
We propose an approach to solve multi-agent path planning (MPP) problems for complex environments. Our method first designs a special pebble graph with a set of feasibility constraints, under which MPP problems have feasibility guarantee. We further propose an algorithm to greedily improve the optimality of planned MPP solutions via parallel pebble motions. As a second step, we develop a mesh optimization algorithm to embed our pebble graph into arbitrarily complex environments. We show that the feasibility constraints of a pebble graph can be converted into differentiable geometric constraints, such that our mesh optimizer can satisfy these constraints via constrained numerical optimization. We have evaluated the effectiveness and efficiency of our method using a set of environments with complex geometries, on which our method achieves an average of 99.0% free-space coverage and 30.3% robot density within hours of computation on a desktop machine.
We study optimal Multi-robot Path Planning (MPP) on graphs, in order to improve the efficiency of multi-robot system (MRS) in the warehouse-like environment. We propose a novel algorithm, OMRPP (One-way Multi-robot Path Planning) based on Integer programming (IP) method. We focus on reducing the cost caused by a set of robots moving from their initial configuration to goal configuration in the warehouse-like environment. The novelty of this work includes: (1) proposing a topological map extraction based on the property of warehouse-like environment to reduce the scale of constructed IP model; (2) proposing one-way passage constraint to prevent the robots from having unsolvable collisions in the passage. (3) developing a heuristic architecture that IP model can always have feasible initial solution to ensure its solvability. Numerous simulations demonstrate the efficiency and performance of the proposed algorithm.
In this work, we present a novel sampling-based path planning method, called SPRINT. The method finds solutions for high dimensional path planning problems quickly and robustly. Its efficiency comes from minimizing the number of collision check samples. This reduction in sampling relies on heuristics that predict the likelihood that samples will be useful in the search process. Specifically, heuristics (1) prioritize more promising search regions; (2) cull samples from local minima regions; and (3) steer the search away from previously observed collision states. Empirical evaluations show that our method finds shorter or comparable-length solution paths in significantly less time than commonly used methods. We demonstrate that these performance gains can be largely attributed to our approach to achieve sample efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا