No Arabic abstract
The remarkable recent progress in the precision of Lattice QCD computations for a number of physical quantities relevant for flavour physics has motivated the introduction of isospin-breaking effects, including in particular electromagnetic corrections, to the computations. The isospin breaking corrections are necessary to fully exploit this improved precision for the determination of the fundamental parameters of the Standard Model, including the CKM matrix elements, and to look for deviations from experimental measurements which might signal the presence of new physics. Together with colleagues from Rome, we have developed and implemented a framework for including isospin-breaking corrections in leptonic decays $Ptoellbar u_ell(gamma)$, where $P$ is a pseudoscalar meson and $ell$ a charged lepton, and the theoretical framework and numerical results are reviewed below. The status of our studies to extend this framework to semileptonic decays $P_1to P_2ellbar u_ell(gamma)$, where $P_{1,2}$ are pseudoscalar mesons, is also presented.
We present a new method to evaluate with high precision the isospin breaking effects due to the mass difference between the up and down quarks using lattice QCD. Our proposal is applicable in principle to any hadronic observable which can be computed on the lattice. It is based on the expansion of the path-integral in powers of the small parameter $m_d - m_u$. In this talk we discuss how to apply this method to compute the leading isospin breaking effects for several physical quantities of interest: the kaon masses, the kaon decay constants and the neutron-proton mass splitting.
We report a direct lattice calculation of the $K$ to $pipi$ decay matrix elements for both the $Delta I=1/2$ and 3/2 amplitudes $A_0$ and $A_2$ on 2+1 flavor, domain wall fermion, $16^3times32times16$ lattices. This is a complete calculation in which all contractions for the required ten, four-quark operators are evaluated, including the disconnected graphs in which no quark line connects the initial kaon and final two-pion states. These lattice operators are non-perturbatively renormalized using the Rome-Southampton method and the quadratic divergences are studied and removed. This is an important but notoriously difficult calculation, requiring high statistics on a large volume. In this paper we take a major step towards the computation of the physical $Ktopipi$ amplitudes by performing a complete calculation at unphysical kinematics with pions of mass 422,MeV at rest in the kaon rest frame. With this simplification we are able to resolve Re$(A_0)$ from zero for the first time, with a 25% statistical error and can develop and evaluate methods for computing the complete, complex amplitude $A_0$, a calculation central to understanding the $Delta =1/2$ rule and testing the standard model of CP violation in the kaon system.
We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic decay widths of pseudoscalar mesons at $O(alpha)$ are universal, i.e. they are independent of the structure of the meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most notably the presence of infrared divergences in decay amplitudes. The leading non-universal, structure-dependent terms are of $O(1/L^2)$ (compared to the $O(1/L^3)$ leading non-universal corrections in the spectrum). We calculate the universal finite-volume effects, which requires an extension of previously developed techniques to include a dependence on an external three-momentum (in our case, the momentum of the final state lepton). The result can be included in the strategy proposed in Ref.,cite{Carrasco:2015xwa} for using lattice simulations to compute the decay widths at $O(alpha)$, with the remaining finite-volume effects starting at order $O(1/L^2)$. The methods developed in this paper can be generalised to other decay processes, most notably to semileptonic decays, and hence open the possibility of a new era in precision flavour physics.
We present a new method to evaluate with high precision isospin breaking effects due to the small mass difference between the up and down quarks using lattice QCD. Our proposal is applicable in principle to any hadronic observable which can be computed on the lattice. It is based on the expansion of the path-integral in powers of the small parameter md-mu. In this paper, we apply this method to compute the leading isospin breaking effects for several physical quantities of interest: the kaon meson masses, the kaon decay constant, the form factors of semileptonic Kl3 decays and the neutron-proton mass splitting.
Isospin symmetry is not exact and the corrections to the isosymmetric limit are, in general, at the percent level. For gold plated quantities, such as pseudoscalar meson masses or the kaon leptonic and semileptonic decay rates, these effects are of the same order of magnitude of the errors quoted in nowadays lattice calculations and cannot be neglected any longer. In this talk I discuss the methods that have been developed in the last few years to calculate isospin breaking corrections by starting from first principles lattice simulations. In particular, I discuss how to perform a combined QCD+QED lattice simulation and a renormalization prescription to be used in order to separate QCD from QED isospin breaking effects. A brief review of recent lattice results of isospin breaking effects on the hadron spectrum is also included.