No Arabic abstract
Platinum diselenide (PtSe${_2}$) is a two-dimensional (2D) material with outstanding electronic and piezoresistive properties. The material can be grown at low temperatures in a scalable manner which makes it extremely appealing for many potential electronics, photonics, and sensing applications. Here, we investigate the nanocrystalline structure of different PtSe${_2}$ thin films grown by thermally assisted conversion (TAC) and correlate them with their electronic and piezoresistive properties. We use scanning transmission electron microscopy for structural analysis, X-ray photoelectron spectroscopy (XPS) for chemical analysis, and Raman spectroscopy for phase identification. Electronic devices are fabricated using transferred PtSe${_2}$ films for electrical characterization and piezoresistive gauge factor measurements. The variations of crystallite size and their orientations are found to have a strong correlation with the electronic and piezoresistive properties of the films, especially the sheet resistivity and the effective charge carrier mobility. Our findings may pave the way for tuning and optimizing the properties of TAC-grown PtSe${_2}$ towards numerous applications.
The exceptional electronic, optical and chemical properties of two-dimensional materials strongly depend on the 3D atomic structure and crystal defects. Using Re-doped MoS2 as a model, here we develop scanning atomic electron tomography (sAET) to determine the 3D atomic positions and crystal defects such as dopants, vacancies and ripples with a precision down to 4 picometers. We measure the 3D bond distortion and local strain tensor induced by single dopants for the first time. By directly providing experimental 3D atomic coordinates to density functional theory (DFT), we obtain more truthful electronic band structures than those derived from conventional DFT calculations relying on relaxed 3D atomic models, which is confirmed by photoluminescence measurements. We anticipate that sAET is not only generally applicable to the determination of the 3D atomic coordinates of 2D materials, heterostructures and thin films, but also could transform ab initio calculations by using experimental 3D atomic coordinates as direct input to better predict and discover new physical, chemical and electronic properties.
Two-dimensional (2D) Van der Waals ferromagnets carry the promise of ultimately miniature spintronics and information storage devices. Among the newly discovered 2D ferromagnets all inherit the magnetic ordering from their bulk ancestors. Here we report a new 2D ferromagnetic semiconductor at room temperature, 2H phase vanadium diselenide (VSe2) which show ferromagnetic at 2D form only. This unique 2D ferromagnetic semiconductor manifests an enhanced magnetic ordering owing to structural anisotropy at 2D limit.
A tuning of Fermi level (E$_F$) near Weyl points is one of the promising approaches to realize large anomalous Nernst effect (ANE). In this work, we introduce an efficient approach to tune E$_F$ for the Co$_2$MnAl Weyl semimetal through a layer-by-layer combinatorial deposition of Co$_2$MnAl$_{1-x}$Si$_x$ (CMAS) thin film. A single-crystalline composition-spread film with x varied from 0 to 1 was fabricated. The structural characterization reveals the formation of single-phase CMAS alloy throughout the composition range with a gradual improvement of L2$_1$ order with x similar to the co-sputtered single layered film, which validates the present fabrication technique. Hard X-ray photoemission spectroscopy for the CMAS composition-spread film directly confirmed the rigid band-like E$_F$ shift of approximately 0.40 eV towards the composition gradient direction from x = 0 to 1. The anomalous Ettingshausen effect (AEE), the reciprocal of ANE, has been measured for whole x range using a single strip along the composition gradient using the lock-in thermography technique. The similarity of the x dependence of observed AEE and ANE signals clearly demonstrates that the AEE measurement on the composition spread film is an effective approach to investigate the composition dependence of ANE of Weyl semimetal thin films and realize the highest performance without fabricating several films, which will accelerate the research for ANE-based energy harvesting
The electronic and magnetic properties of transition metal dichalcogenides are known to be extremely sensitive to their structure. In this paper we study the effect of structure on the electronic and magnetic properties of mono- and bilayer $VSe_2$ films grown using molecular beam epitaxy. $VSe_2$ has recently attracted much attention due to reports of emergent ferromagnetism in the 2D limit. To understand this important compound, high quality 1T and distorted 1T films were grown at temperatures of 200 $^text{o}$C and 450 $^text{o}$C respectively and studied using 4K Scanning Tunneling Microscopy/Spectroscopy. The measured density of states and the charge density wave (CDW) patterns were compared to band structure and phonon dispersion calculations. Films in the 1T phase reveal different CDW patterns in the first layer compared to the second. Interestingly, we find the second layer of the 1T-film shows a CDW pattern with 4a $times$ 4a periodicity which is the 2D version of the bulk CDW observed in this compound. Our phonon dispersion calculations confirm the presence of a soft phonon at the correct wavevector that leads to this CDW. In contrast, the first layer of distorted 1T phase films shows a strong stripe feature with varying periodicities, while the second layer displays no observable CDW pattern. Finally, we find that the monolayer 1T $VSe_2$ film is weakly ferromagnetic, with ~ $3.5 {mu}_B$ per unit similar to previous reports.
One primary concern in diluted magnetic semiconductors (DMSs) is how to establish a long-range magnetic order with a low magnetic doping concentration to maintain the gate tunability of the host semiconductor, as well as to increase Curie temperature. Two-dimensional van der Waals semiconductors have been recently investigated to demonstrate the magnetic order in DMSs; however, a comprehensive understanding of the mechanism responsible for the gate-tunable long-range magnetic order in DMSs has not been achieved yet. Here, we introduce a monolayer tungsten diselenide (WSe2) semiconductor with V dopants to demonstrate the long-range magnetic order through itinerant spin-polarized holes. The V atoms are sparsely located in the host lattice by substituting W atoms, which is confirmed by scanning tunneling microscopy and high-resolution transmission electron microscopy. The V impurity states and the valence band edge states are overlapped, which is congruent with density functional theory calculations. The field-effect transistor characteristics reveal the itinerant holes within the hybridized band; this clearly resembles the Zener model. Our study gives an insight into the mechanism of the long-range magnetic order in V-doped WSe2, which can also be used for other magnetically doped semiconducting transition metal dichalcogenides.