No Arabic abstract
Modern wind turbine control algorithms typically utilize rotor effective wind speed measured from an anemometer on the turbines nacelle. Unfortunately, the measured wind speed from such a single measurement point does not give a good representation of the effective wind speed over the blades, as it does not take the varying wind condition within the entire rotor area into account. As such, Blade Effective Wind Speed (BEWS) estimation can be seen as a more accurate alternative. This paper introduces a novel Subspace Predictive Repetitive Estimator (SPRE) approach to estimate the BEWS using blade load measurements. In detail, the azimuth-dependent cone coefficient is firstly formulated to describe the mapping between the out-of-plane blade root bending moment and the wind speed over blades. Then, the SPRE scheme, which is inspired by Subspace Predictive Repetitive Control (SPRC), is proposed to estimate the BEWS. Case studies exhibit the proposed methods effectiveness at predicting BEWS and identifying wind shear in varying wind speed conditions. Moreover, this novel technique enables complicated wind inflow conditions, where a rotor is impinged and overlapped by wake shed from an upstream turbine, to be estimated.
A logical function can be used to characterizing a property of a state of Boolean network (BN), which is considered as an aggregation of states. To illustrate the dynamics of a set of logical functions, which characterize our concerned properties of a BN, the invariant subspace containing the set of logical functions is proposed, and its properties are investigated. Then the invariant subspace of Boolean control network (BCN) is also proposed. The dynamics of invariant subspace of BCN is also invariant. Finally, using outputs as the set of logical functions, the minimum realization of BCN is proposed, which provides a possible solution to overcome the computational complexity of large scale BNs/BCNs.
Real-time altitude control of airborne wind energy (AWE) systems can improve performance by allowing turbines to track favorable wind speeds across a range of operating altitudes. The current work explores the performance implications of deploying an AWE system with sensor configurations that provide different amounts of data to characterize wind speed profiles. We examine various control objectives that balance trade-offs between exploration and exploitation, and use a persistence model to generate a probabilistic wind speed forecast to inform control decisions. We assess system performance by comparing power production against baselines such as omniscient control and stationary flight. We show that with few sensors, control strategies that reward exploration are favored. We also show that with comprehensive sensing, the implications of choosing a sub-optimal control strategy decrease. This work informs and motivates the need for future research exploring online learning algorithms to characterize vertical wind speed profiles.
In this paper, we consider a stochastic Model Predictive Control able to account for effects of additive stochastic disturbance with unbounded support, and requiring no restrictive assumption on either independence nor Gaussianity. We revisit the rather classical approach based on penalty functions, with the aim of designing a control scheme that meets some given probabilistic specifications. The main difference with previous approaches is that we do not recur to the notion of probabilistic recursive feasibility, and hence we do not consider separately the unfeasible case. In particular, two probabilistic design problems are envisioned. The first randomization problem aims to design textit{offline} the constraint set tightening, following an approach inherited from tube-based MPC. For the second probabilistic scheme, a specific probabilistic validation approach is exploited for tuning the penalty parameter, to be selected textit{offline} among a finite-family of possible values. The simple algorithm here proposed allows designing a textit{single} controller, always guaranteeing feasibility of the online optimization problem. The proposed method is shown to be more computationally tractable than previous schemes. This is due to the fact that the sample complexity for both probabilistic design problems depends on the prediction horizon in a logarithmic way, unlike scenario-based approaches which exhibit linear dependence. The efficacy of the proposed approach is demonstrated with a numerical example.
In this work, we have developed a framework for synthesizing data driven controllers for a class of uncertain switched systems arising in an application to physical activity interventions. In particular, we present an application of probabilistic model predictive control to design an efficient, tractable, and adaptive intervention using behavioral data sets i.e. physical activity behavior. The models of physical activity for each individual are provided for the design of controllers that maximize the probability of achieving a desired physical activity goal subject to intervention specifications. We have tailored the mixed-integer programming-based approach for evaluating the Model Predictive Control decision at each time step.
In this paper a novel approach to co-design controller and attack detector for nonlinear cyber-physical systems affected by false data injection (FDI) attack is proposed. We augment the model predictive controller with an additional constraint requiring the future---in some steps ahead---trajectory of the system to remain in some time-invariant neighborhood of a properly designed reference trajectory. At any sampling time, we compare the real-time trajectory of the system with the designed reference trajectory, and construct a residual. The residual is then used in a nonparametric cumulative sum (CUSUM) anomaly detector to uncover FDI attacks on input and measurement channels. The effectiveness of the proposed approach is tested with a nonlinear model regarding level control of coupled tanks.