Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks


Abstract in English

Deep residual network architectures have been shown to achieve superior accuracy over classical feed-forward networks, yet their success is still not fully understood. Focusing on massively over-parameterized, fully connected residual networks with ReLU activation through their respective neural tangent kernels (ResNTK), we provide here a spectral analysis of these kernels. Specifically, we show that, much like NTK for fully connected networks (FC-NTK), for input distributed uniformly on the hypersphere $mathbb{S}^{d-1}$, the eigenfunctions of ResNTK are the spherical harmonics and the eigenvalues decay polynomially with frequency $k$ as $k^{-d}$. These in turn imply that the set of functions in their Reproducing Kernel Hilbert Space are identical to those of FC-NTK, and consequently also to those of the Laplace kernel. We further show, by drawing on the analogy to the Laplace kernel, that depending on the choice of a hyper-parameter that balances between the skip and residual connections ResNTK can either become spiky with depth, as with FC-NTK, or maintain a stable shape.

Download