Nonlinearities in lattices with topologically nontrivial band structures can give rise to topological solitons, whose properties differ from both conventional lattice solitons and linear topological boundary states. We show that a Su-Schrieffer-Heeger-type lattice with both nonlinearity and nonreciprocal non-Hermiticity hosts a novel oscillatory soliton, which we call a topological end breather. The end breather is strongly localized to a self-induced topological domain near the end of the lattice, in sharp contrast to the extended topological solitons previously found in one-dimensional lattices. Its stable oscillatory dynamics can be interpreted as a Rabi oscillation between two self-induced topological boundary states, emerging from a combination of chiral lattice symmetry and the non-Hermitian skin effect. This demonstrates that non-Hermitian effects can give rise to a wider variety of topological solitons than was previously known to exist.