No Arabic abstract
Photo-realistic neural reconstruction and rendering of the human portrait are critical for numerous VR/AR applications. Still, existing solutions inherently rely on multi-view capture settings, and the one-shot solution to get rid of the tedious multi-view synchronization and calibration remains extremely challenging. In this paper, we propose MirrorNeRF - a one-shot neural portrait free-viewpoint rendering approach using a catadioptric imaging system with multiple sphere mirrors and a single high-resolution digital camera, which is the first to combine neural radiance field with catadioptric imaging so as to enable one-shot photo-realistic human portrait reconstruction and rendering, in a low-cost and casual capture setting. More specifically, we propose a light-weight catadioptric system design with a sphere mirror array to enable diverse ray sampling in the continuous 3D space as well as an effective online calibration for the camera and the mirror array. Our catadioptric imaging system can be easily deployed with a low budget and the casual capture ability for convenient daily usages. We introduce a novel neural warping radiance field representation to learn a continuous displacement field that implicitly compensates for the misalignment due to our flexible system setting. We further propose a density regularization scheme to leverage the inherent geometry information from the catadioptric data in a self-supervision manner, which not only improves the training efficiency but also provides more effective density supervision for higher rendering quality. Extensive experiments demonstrate the effectiveness and robustness of our scheme to achieve one-shot photo-realistic and high-quality appearance free-viewpoint rendering for human portrait scenes.
We present a method for estimating Neural Radiance Fields (NeRF) from a single headshot portrait. While NeRF has demonstrated high-quality view synthesis, it requires multiple images of static scenes and thus impractical for casual captures and moving subjects. In this work, we propose to pretrain the weights of a multilayer perceptron (MLP), which implicitly models the volumetric density and colors, with a meta-learning framework using a light stage portrait dataset. To improve the generalization to unseen faces, we train the MLP in the canonical coordinate space approximated by 3D face morphable models. We quantitatively evaluate the method using controlled captures and demonstrate the generalization to real portrait images, showing favorable results against state-of-the-arts.
We present a deep learning-based framework for portrait reenactment from a single picture of a target (one-shot) and a video of a driving subject. Existing facial reenactment methods suffer from identity mismatch and produce inconsistent identities when a target and a driving subject are different (cross-subject), especially in one-shot settings. In this work, we aim to address identity preservation in cross-subject portrait reenactment from a single picture. We introduce a novel technique that can disentangle identity from expressions and poses, allowing identity preserving portrait reenactment even when the drivers identity is very different from that of the target. This is achieved by a novel landmark disentanglement network (LD-Net), which predicts personalized facial landmarks that combine the identity of the target with expressions and poses from a different subject. To handle portrait reenactment from unseen subjects, we also introduce a feature dictionary-based generative adversarial network (FD-GAN), which locally translates 2D landmarks into a personalized portrait, enabling one-shot portrait reenactment under large pose and expression variations. We validate the effectiveness of our identity disentangling capabilities via an extensive ablation study, and our method produces consistent identities for cross-subject portrait reenactment. Our comprehensive experiments show that our method significantly outperforms the state-of-the-art single-image facial reenactment methods. We will release our code and models for academic use.
We propose pixelNeRF, a learning framework that predicts a continuous neural scene representation conditioned on one or few input images. The existing approach for constructing neural radiance fields involves optimizing the representation to every scene independently, requiring many calibrated views and significant compute time. We take a step towards resolving these shortcomings by introducing an architecture that conditions a NeRF on image inputs in a fully convolutional manner. This allows the network to be trained across multiple scenes to learn a scene prior, enabling it to perform novel view synthesis in a feed-forward manner from a sparse set of views (as few as one). Leveraging the volume rendering approach of NeRF, our model can be trained directly from images with no explicit 3D supervision. We conduct extensive experiments on ShapeNet benchmarks for single image novel view synthesis tasks with held-out objects as well as entire unseen categories. We further demonstrate the flexibility of pixelNeRF by demonstrating it on multi-object ShapeNet scenes and real scenes from the DTU dataset. In all cases, pixelNeRF outperforms current state-of-the-art baselines for novel view synthesis and single image 3D reconstruction. For the video and code, please visit the project website: https://alexyu.net/pixelnerf
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis. Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference. Our approach leverages plane-swept cost volumes (widely used in multi-view stereo) for geometry-aware scene reasoning, and combines this with physically based volume rendering for neural radiance field reconstruction. We train our network on real objects in the DTU dataset, and test it on three different datasets to evaluate its effectiveness and generalizability. Our approach can generalize across scenes (even indoor scenes, completely different from our training scenes of objects) and generate realistic view synthesis results using only three input images, significantly outperforming concurrent works on generalizable radiance field reconstruction. Moreover, if dense images are captured, our estimated radiance field representation can be easily fine-tuned; this leads to fast per-scene reconstruction with higher rendering quality and substantially less optimization time than NeRF.
We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained popularity for remarkable realistic novel view synthesis. However, most of them heavily rely on accurate camera poses estimation, while few recent methods can only optimize the unknown camera poses in roughly forward-facing scenes with relatively short camera trajectories and require rough camera poses initialization. Differently, our GNeRF only utilizes randomly initialized poses for complex outside-in scenarios. We propose a novel two-phases end-to-end framework. The first phase takes the use of GANs into the new realm for optimizing coarse camera poses and radiance fields jointly, while the second phase refines them with additional photometric loss. We overcome local minima using a hybrid and iterative optimization scheme. Extensive experiments on a variety of synthetic and natural scenes demonstrate the effectiveness of GNeRF. More impressively, our approach outperforms the baselines favorably in those scenes with repeated patterns or even low textures that are regarded as extremely challenging before.