Fully Automated Noncoplanar Radiation Therapy Treatment Planning


Abstract in English

Noncoplanar radiation therapy treatment planning has the potential to improve dosimetric quality as compared to traditional coplanar techniques. Likewise, automated treatment planning algorithms can reduce a planners active treatment planning time and remove inter-planner variability. To address the limitations of traditional treatment planning, we have been developing a suite of algorithms called station parameter optimized radiation therapy (SPORT). Within the SPORT suite of algorithms, we propose a method called NC-POPS to produce noncoplanar (NC) plans using the fully automated Pareto Optimal Projection Search (POPS) algorithm. Our NC-POPS algorithm extends the original POPS algorithm to the noncoplanar setting with potential applications to both IMRT and VMAT. The proposed algorithm consists of two main parts: 1) noncoplanar beam angle optimization (BAO) and 2) fully automated inverse planning using the POPS algorithm. We evaluate the performance of NC-POPS by comparing between various noncoplanar and coplanar configurations. To evaluate plan quality, we compute the homogeneity index (HI), conformity index (CI), and dose-volume histogram (DVH) statistics for various organs-at-risk (OARs). As compared to the evaluated coplanar baseline methods, the proposed NC-POPS method achieves significantly better OAR sparing, comparable or better dose conformity, and similar dose homogeneity. Our proposed NC-POPS algorithm provides a modular approach for fully automated treatment planning of noncoplanar IMRT cases with the potential to substantially improve treatment planning workflow and plan quality.

Download