Do you want to publish a course? Click here

TUSQ: Targeted High-Utility Sequence Querying

221   0   0.0 ( 0 )
 Added by Wensheng Gan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Significant efforts have been expended in the research and development of a database management system (DBMS) that has a wide range of applications for managing an enormous collection of multisource, heterogeneous, complex, or growing data. Besides the primary function (i.e., create, delete, and update), a practical and impeccable DBMS can interact with users through information selection, that is, querying with their targets. Previous querying algorithms, such as frequent itemset querying and sequential pattern querying (SPQ) have focused on the measurement of frequency, which does not involve the concept of utility, which is helpful for users to discover more informative patterns. To apply the querying technology for wider applications, we incorporate utility into target-oriented SPQ and formulate the task of targeted utility-oriented sequence querying. To address the proposed problem, we develop a novel algorithm, namely targeted high-utility sequence querying (TUSQ), based on two novel upper bounds suffix remain utility and terminated descendants utility as well as a vertical Last Instance Table structure. For further efficiency, TUSQ relies on a projection technology utilizing a compact data structure called the targeted chain. An extensive experimental study conducted on several real and synthetic datasets shows that the proposed algorithm outperformed the designed baseline algorithm in terms of runtime, memory consumption, and candidate filtering.



rate research

Read More

Utility mining has emerged as an important and interesting topic owing to its wide application and considerable popularity. However, conventional utility mining methods have a bias toward items that have longer on-shelf time as they have a greater chance to generate a high utility. To eliminate the bias, the problem of on-shelf utility mining (OSUM) is introduced. In this paper, we focus on the task of OSUM of sequence data, where the sequential database is divided into several partitions according to time periods and items are associated with utilities and several on-shelf time periods. To address the problem, we propose two methods, OSUM of sequence data (OSUMS) and OSUMS+, to extract on-shelf high-utility sequential patterns. For further efficiency, we also designed several strategies to reduce the search space and avoid redundant calculation with two upper bounds time prefix extension utility (TPEU) and time reduced sequence utility (TRSU). In addition, two novel data structures were developed for facilitating the calculation of upper bounds and utilities. Substantial experimental results on certain real and synthetic datasets show that the two methods outperform the state-of-the-art algorithm. In conclusion, OSUMS may consume a large amount of memory and is unsuitable for cases with limited memory, while OSUMS+ has wider real-life applications owing to its high efficiency.
Next-generation sequencing (NGS) technologies have enabled affordable sequencing of billions of short DNA fragments at high throughput, paving the way for population-scale genomics. Genomics data analytics at this scale requires overcoming performance bottlenecks, such as searching for short DNA sequences over long reference sequences. In this paper, we introduce LISA (Learned Indexes for Sequence Analysis), a novel learning-based approach to DNA sequence search. As a first proof of concept, we focus on accelerating one of the most essential flavors of the problem, called exact search. LISA builds on and extends FM-index, which is the state-of-the-art technique widely deployed in genomics tool-chains. Initial experiments with human genome datasets indicate that LISA achieves up to a factor of 4X performance speedup against its traditional counterpart.
Utility-driven itemset mining is widely applied in many real-world scenarios. However, most algorithms do not work for itemsets with negative utilities. Several efficient algorithms for high-utility itemset (HUI) mining with negative utilities have been proposed. These algorithms can find complete HUIs with or without negative utilities. However, the major problem with these algorithms is how to select an appropriate minimum utility (minUtil) threshold. To address this issue, some efficient algorithms for extracting top-k HUIs have been proposed, where parameter k is the quantity of HUIs to be discovered. However, all of these algorithms can solve only one part of the above problem. In this paper, we present a method for TOP-k high-utility Itemset disCovering (TOPIC) with positive and negative utility values, which utilizes the advantages of the above algorithms. TOPIC adopts transaction merging and database projection techniques to reduce the database scanning cost, and utilizes minUtil threshold raising strategies. It also uses an array-based utility technique, which calculates the utility of itemsets and upper bounds in linear time. We conducted extensive experiments on several real and synthetic datasets, and the results showed that TOPIC outperforms state-of-the-art algorithm in terms of runtime, memory costs, and scalability.
Episode discovery from an event is a popular framework for data mining tasks and has many real-world applications. An episode is a partially ordered set of objects (e.g., item, node), and each object is associated with an event type. This episode can also be considered as a complex event sub-sequence. High-utility episode mining is an interesting utility-driven mining task in the real world. Traditional episode mining algorithms, by setting a threshold, usually return a huge episode that is neither intuitive nor saves time. In general, finding a suitable threshold in a pattern-mining algorithm is a trivial and time-consuming task. In this paper, we propose a novel algorithm, called Top-K High Utility Episode (THUE) mining within the complex event sequence, which redefines the previous mining task by obtaining the K highest episodes. We introduce several threshold-raising strategies and optimize the episode-weighted utilization upper bounds to speed up the mining process and effectively reduce the memory cost. Finally, the experimental results on both real-life and synthetic datasets reveal that the THUE algorithm can offer six to eight orders of magnitude running time performance improvement over the state-of-the-art algorithm and has low memory consumption.
High-utility sequential pattern mining (HUSPM) has recently emerged as a focus of intense research interest. The main task of HUSPM is to find all subsequences, within a quantitative sequential database, that have high utility with respect to a user-defined minimum utility threshold. However, it is difficult to specify the minimum utility threshold, especially when database features, which are invisible in most cases, are not understood. To handle this problem, top-k HUSPM was proposed. Up to now, only very preliminary work has been conducted to capture top-k HUSPs, and existing strategies require improvement in terms of running time, memory consumption, unpromising candidate filtering, and scalability. Moreover, no systematic problem statement has been defined. In this paper, we formulate the problem of top-k HUSPM and propose a novel algorithm called TKUS. To improve efficiency, TKUS adopts a projection and local search mechanism and employs several schemes, including the Sequence Utility Raising, Terminate Descendants Early, and Eliminate Unpromising Items strategies, which allow it to greatly reduce the search space. Finally, experimental results demonstrate that TKUS can achieve sufficiently good top-k HUSPM performance compared to state-of-the-art algorithm TKHUS-Span.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا