No Arabic abstract
The complex structure of gas, metals, and dust in the interstellar and circumgalactic medium (ISM and CGM, respectively) in star-forming galaxies can be probed by Ly$alpha$ emission and absorption, low-ionization interstellar (LIS) metal absorption, and dust reddening E(B-V). We present a statistical analysis of the mutual correlations among Ly$alpha$ equivalent width (EW$_{Lyalpha}$), LIS equivalent width (EW$_{LIS}$), and E(B-V) in a sample of 157 star-forming galaxies at $zsim2.3$. With measurements obtained from individual, deep rest-UV spectra and spectral-energy distribution (SED) modeling, we find that the tightest correlation exists between EW$_{LIS}$ and E(B-V), although correlations among all three parameters are statistically significant. These results signal a direct connection between dust and metal-enriched HI gas, and that they are likely co-spatial. By comparing our results with the predictions of different ISM/CGM models, we favor a dusty ISM/CGM model where dust resides in HI gas clumps and Ly$alpha$ photons escape through the low HI covering fraction/column density intra-clump medium. Finally, we investigate the factors that potentially contribute to the intrinsic scatter in the correlations studied in this work, including metallicity, outflow kinematics, Ly$alpha$ production efficiency, and slit loss. Specifically, we find evidence that scatter in the relationship between EW$_{Lyalpha}$ and E(B-V) reflects the variation in metal-to-HI covering fraction ratio as a function of metallicity, and the effects of outflows on the porosity of the ISM/CGM. Future simulations incorporating star-formation feedback and the radiative transfer of Ly$alpha$ photons will provide key constraints on the spatial distributions of neutral hydrogen gas and dust in the ISM/CGM structure.
We use extensive spectroscopy from the MOSFIRE Deep Evolution Field (MOSDEF) survey to investigate the relationships between rest-frame optical emission line equivalent widths ($W$) and a number of galaxy and ISM characteristics for a sample of $1134$ star-forming galaxies at redshifts $1.4lesssim zlesssim 3.8$. We examine how the equivalent widths of [OII]$lambdalambda 3727, 3730$, H$beta$, [OIII]$lambdalambda 4960, 5008$, [OIII]$+$H$beta$, H$alpha$, and H$alpha$+[NII]$lambdalambda 6550, 6585$, depend on stellar mass, UV slope, age, star-formation rate (SFR) and specific SFR (sSFR), ionization parameter and excitation conditions (O32 and [OIII]/H$beta$), gas-phase metallicity, and ionizing photon production efficiency ($xi_{rm ion}$). The trend of increasing $W$ with decreasing stellar mass is strongest for [OIII] (and [OIII]+H$beta$). More generally, the equivalent widths of all the lines increase with redshift at a fixed stellar mass or fixed gas-phase metallicity, suggesting that high equivalent width galaxies are common at high redshift. This redshift evolution in equivalent widths can be explained by the increase in SFR and decrease in metallicity with redshift at a fixed stellar mass. Consequently, the dependence of $W$ on sSFR is largely invariant with redshift, particularly when examined for galaxies of a given metallicity. Our results show that high equivalent width galaxies, specifically those with high $W({rm [OIII]})$, have low stellar masses, blue UV slopes, young ages, high sSFRs, ISM line ratios indicative of high ionization parameters, high $xi_{rm ion}$, and low metallicities. As these characteristics are often attributed to galaxies with high ionizing escape fractions, galaxies with high $W$ are likely candidates for the population that dominates cosmic reionization.
We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z~3. We then apply this relation to a sample of 224 galaxies at 3.5 < z < 6.0 (<z> = 4.8) in COSMOS, for which unique UV spectra from DEIMOS and accurate stellar masses from SPLASH are available. The average galaxy population at z~5 and log(M/Msun) > 9 is characterized by 0.3-0.4 dex (in units of 12+log(O/H)) lower metallicities than at z~2, but comparable to z~3.5. We find galaxies with weak/no Ly-alpha emission to have metallicities comparable to z~2 galaxies and therefore may represent an evolved sub-population of z~5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate (SFR) consistent with observations at z~2. The relation between stellar mass and metallicity (MZ relation) is similar to z~3.5, however, there are indications of it being slightly shallower, in particular for the young, Ly-alpha emitting galaxies. We show that, within a bathtub approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100-200 Myr. Due to this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.
We analyze the rest-optical emission-line spectra of $zsim2.3$ star-forming galaxies in the complete MOSFIRE Deep Evolution Field (MOSDEF) survey. In investigating the origin of the well-known offset between the sequences of high-redshift and local galaxies in the [O III]5008/H$beta$ vs. [N II]6585/H$alpha$ ([N II] BPT) diagram, we define two populations of $zsim2.3$ MOSDEF galaxies. These include the high population that is offset towards higher [O III]5008/H$beta$ and/or [N II]6585/H$alpha$ with respect to the local SDSS sequence and the low population that overlaps the SDSS sequence. These two groups are also segregated within the [O III]5008/H$beta$ vs. [S II]6718,6733/H$alpha$ and the [O III]4960,5008/[O II]3727,3730 (O$_{32}$) vs. ([O III]4960,5008+[O II]3727,3730)/H$beta$ (R$_{23}$) diagram, which suggests qualitatively that star-forming regions in the more offset galaxies are characterized by harder ionizing spectra at fixed nebular oxygen abundance. We also investigate many galaxy properties of the split sample and find that the high sample is on average smaller in size and less massive, but has higher specific star-formation rate and star-formation-rate surface density values and is slightly younger compared to the low population. From Cloudy+BPASS photoionization models, we estimate that the high population has a lower stellar metallicity (i.e., harder ionizing spectrum) but slightly higher nebular metallicity and higher ionization parameter compared to the low population. While the high population is more $alpha$-enhanced (i.e., higher $alpha$/Fe) than the low population, both samples are significantly more $alpha$-enhanced compared to local star-forming galaxies with similar rest-optical line ratios. These differences must be accounted for in all high-redshift star-forming galaxies -- not only those offset from local excitation sequences.
We study the relationship between stellar mass, star formation rate (SFR),ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at $3 lesssim z lesssim 3.7$. The gas-phase oxygen abundance, ionization parameter, and electron density of ionized gas are derived from rest-frame optical strong emission lines measured on near-infrared spectra obtained with Keck/MOSFIRE. We remove the effect of these strong emission lines in the broad-band fluxes to compute stellar masses via spectral energy distribution fitting, while the SFR is derived from the dust-corrected ultraviolet luminosity. The ionization parameter is weakly correlated with the specific SFR, but otherwise the ionization parameter and electron density do not correlate with other global galaxy properties such as stellar mass, SFR, and metallicity. The mass-metallicity relation (MZR) at $zsimeq3.3$ shows lower metallicity by $simeq 0.7$ dex than that at $z=0$ at the same stellar mass. Our sample shows an offset by $simeq 0.3$ dex from the locally defined mass-metallicity-SFR relation, indicating that simply extrapolating such relation to higher redshift may predict an incorrect evolution of MZR. Furthermore, within the uncertainties we find no SFR-metallicity correlation, suggesting a less important role of SFR in controlling the metallicity at high redshift. We finally investigate the redshift evolution of the MZR by using the model by Lilly et al. (2013), finding that the observed evolution from $z=0$ to $zsimeq3.3$ can be accounted for by the model assuming a weak redshift evolution of the star formation efficiency.
We present an analysis using the MOSFIRE Deep Evolution Field (MOSDEF) survey on the nature of MIR-excess galaxies, which have star formation rates (SFR) inferred from mid-infrared (MIR) data that is substantially elevated relative to that estimated from dust-corrected UV data. We use a sample of $sim$200 galaxies and AGN at $1.40<z<2.61$ with 24 $mu$m detections (rest-frame 8$mu$m) from MIPS/textit{Spitzer}. We find that the identification of MIR-excess galaxies strongly depends on the methodologies used to estimate IR luminosity ($rm L_{IR}$) and to correct the UV light for dust attenuation. We find that extrapolations of the SFR from the observed 24 $mu$m flux, using luminosity-dependent templates based on local galaxies, substantially overestimate $rm L_{IR}$ in $zsim2$ galaxies. By including textit{Herschel} observations and using a stellar mass-dependent, luminosity-independent $rm L_{IR}$, we obtain more reliable estimates of the SFR and a lower fraction of MIR-excess galaxies. Once stellar mass selection biases are taken into account, we identify $sim24%$ of our galaxies as MIR-excess. However, $rm SFR_{Halpha}$ is not elevated in MIR-excess galaxies compared to MIR-normal galaxies, indicating that the intrinsic fraction of MIR-excess may be lower. Using X-ray, IR, and optically-selected AGN in MOSDEF, we do not find a higher prevalence for AGN in MIR-excess galaxies relative to MIR-normal galaxies. A stacking analysis of X-ray undetected galaxies does not reveal a harder spectrum in MIR-excess galaxies relative to MIR-normal galaxies. Our analysis indicates that AGN activity does not contribute substantially to the MIR excess and instead implies that it is likely due to the enhanced PAH emission.