Do you want to publish a course? Click here

Connectionism, Complexity, and Living Systems: a comparison of Artificial and Biological Neural Networks

114   0   0.0 ( 0 )
 Added by Bradly Alicea
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While Artificial Neural Networks (ANNs) have yielded impressive results in the realm of simulated intelligent behavior, it is important to remember that they are but sparse approximations of Biological Neural Networks (BNNs). We go beyond comparison of ANNs and BNNs to introduce principles from BNNs that might guide the further development of ANNs as embodied neural models. These principles include representational complexity, complex network structure/energetics, and robust function. We then consider these principles in ways that might be implemented in the future development of ANNs. In conclusion, we consider the utility of this comparison, particularly in terms of building more robust and dynamic ANNs. This even includes constructing a morphology and sensory apparatus to create an embodied ANN, which when complemented with the organizational and functional advantages of BNNs unlocks the adaptive potential of lifelike networks.



rate research

Read More

Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform machine learning tasks on digital computers. The proposed work explores the possibilities of using living neural networks in vitro as basic computational elements for machine learning applications. A new supervised STDP-based learning algorithm is proposed in this work, which considers neuron engineering constrains. A 74.7% accuracy is achieved on the MNIST benchmark for handwritten digit recognition.
The spiking neural network (SNN) computes and communicates information through discrete binary events. It is considered more biologically plausible and more energy-efficient than artificial neural networks (ANN) in emerging neuromorphic hardware. However, due to the discontinuous and non-differentiable characteristics, training SNN is a relatively challenging task. Recent work has achieved essential progress on an excellent performance by converting ANN to SNN. Due to the difference in information processing, the converted deep SNN usually suffers serious performance loss and large time delay. In this paper, we analyze the reasons for the performance loss and propose a novel bistable spiking neural network (BSNN) that addresses the problem of spikes of inactivated neurons (SIN) caused by the phase lead and phase lag. Also, when ResNet structure-based ANNs are converted, the information of output neurons is incomplete due to the rapid transmission of the shortcut path. We design synchronous neurons (SN) to help efficiently improve performance. Experimental results show that the proposed method only needs 1/4-1/10 of the time steps compared to previous work to achieve nearly lossless conversion. We demonstrate state-of-the-art ANN-SNN conversion for VGG16, ResNet20, and ResNet34 on challenging datasets including CIFAR-10 (95.16% top-1), CIFAR-100 (78.12% top-1), and ImageNet (72.64% top-1).
In the last decade, artificial intelligence (AI) models inspired by the brain have made unprecedented progress in performing real-world perceptual tasks like object classification and speech recognition. Recently, researchers of natural intelligence have begun using those AI models to explore how the brain performs such tasks. These developments suggest that future progress will benefit from increased interaction between disciplines. Here we introduce the Algonauts Project as a structured and quantitative communication channel for interdisciplinary interaction between natural and artificial intelligence researchers. The projects core is an open challenge with a quantitative benchmark whose goal is to account for brain data through computational models. This project has the potential to provide better models of natural intelligence and to gather findings that advance AI. The 2019 Algonauts Project focuses on benchmarking computational models predicting human brain activity when people look at pictures of objects. The 2019 edition of the Algonauts Project is available online: http://algonauts.csail.mit.edu/.
There are several indications that brain is organized not on a basis of individual unreliable neurons, but on a micro-circuital scale providing Lego blocks employed to create complex architectures. At such an intermediate scale, the firing activity in the microcircuits is governed by collective effects emerging by the background noise soliciting spontaneous firing, the degree of mutual connections between the neurons, and the topology of the connections. We compare spontaneous firing activity of small populations of neurons adhering to an engineered scaffold with simulations of biologically plausible CMOS artificial neuron populations whose spontaneous activity is ignited by tailored background noise. We provide a full set of flexible and low-power consuming silicon blocks including neurons, excitatory and inhibitory synapses, and both white and pink noise generators for spontaneous firing activation. We achieve a comparable degree of correlation of the firing activity of the biological neurons by controlling the kind and the number of connection among the silicon neurons. The correlation between groups of neurons, organized as a ring of four distinct populations connected by the equivalent of interneurons, is triggered more effectively by adding multiple synapses to the connections than increasing the number of independent point-to-point connections. The comparison between the biological and the artificial systems suggests that a considerable number of synapses is active also in biological populations adhering to engineered scaffolds.
Deep neural networks (DNNs) transform stimuli across multiple processing stages to produce representations that can be used to solve complex tasks, such as object recognition in images. However, a full understanding of how they achieve this remains elusive. The complexity of biological neural networks substantially exceeds the complexity of DNNs, making it even more challenging to understand the representations that they learn. Thus, both machine learning and computational neuroscience are faced with a shared challenge: how can we analyze their representations in order to understand how they solve complex tasks? We review how data-analysis concepts and techniques developed by computational neuroscientists can be useful for analyzing representations in DNNs, and in turn, how recently developed techniques for analysis of DNNs can be useful for understanding representations in biological neural networks. We explore opportunities for synergy between the two fields, such as the use of DNNs as in-silico model systems for neuroscience, and how this synergy can lead to new hypotheses about the operating principles of biological neural networks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا