No Arabic abstract
The symmetry operators generating the hidden $mathbb{Z}_2$ symmetry of the asymmetric quantum Rabi model (AQRM) at bias $epsilon in frac{1}{2}mathbb{Z}$ have recently been constructed by V. V. Mangazeev et al. [J. Phys. A: Math. Theor. 54 12LT01 (2021)]. We start with this result to determine symmetry operators for the $N$-qubit generalisation of the AQRM, also known as the biased Dicke model, at special biases. We also prove for general $N$ that the symmetry operators, which commute with the Hamiltonian of the biased Dicke model, generate a $mathbb{Z}_2$ symmetry.
In this paper, we derive the symmetry operators ($J$s) in the asymmetric two-photon quantum Rabi models in terms of Bogoliubov operator approaches. $ J^2$ can be expressed as a polynomial in terms of the Hamiltonian, which uncovers the $mathbb{Z}_{2}$ nature of the hidden symmetry in this two-photon model rigorously. The previous symmetry operators in the asymmetric one-photon quantum Rabi models are reproduced readily in terms of Bogoliubov operator approaches, and the obtained operators are expressed much more concisely. It is found that the polynomial degree of $J^2$ in the two-photon model is twice of that in the one-photon model.
We study the ergodic -- non-ergodic transition in a generalized Dicke model with independent co- and counter rotating light-matter coupling terms. By studying level statistics, the average ratio of consecutive level spacings, and the quantum butterfly effect (out-of-time correlation) as a dynamical probe, we show that the ergodic -- non-ergodic transition in the Dicke model is a consequence of the proximity to the integrable limit of the model when one of the couplings is set to zero. This can be interpreted as a hint for the existence of a quantum analogue of the classical Kolmogorov-Arnold-Moser theorem. Besides, we show that there is no intrinsic relation between the ergodic -- non-ergodic transition and the precursors of the normal -- superradiant quantum phase transition.
A very approximate second integral of motion of the Dicke model is identified within a broad region above the ground state, and for a wide range of values of the external parameters. This second integral, obtained from a Born Oppenheimer approximation, classifies the whole regular part of the spectrum in bands labelled by its corresponding eigenvalues. Results obtained from this approximation are compared with exact numerical diagonalization for finite systems in the superradiant phase, obtaining a remarkable accord. The region of validity of our approach in the parameter space, which includes the resonant case, is unveiled. The energy range of validity goes from the ground state up to a certain upper energy where chaos sets in, and extends far beyond the range of applicability of a simple harmonic approximation around the minimal energy configuration. The upper energy validity limit increases for larger values of the coupling constant and the ratio between the level splitting and the frequency of the field. These results show that the Dicke model behaves like a two-degree of freedom integrable model for a wide range of energies and values of the external parameters.
Peres lattices are employed as a visual method to identify the presence of chaos in different regions of the energy spectra in the Dicke model. The coexistence of regular and chaotic regions can be clearly observed for certain energy regions, even if the coupling constant is smaller than the critical value to reach superradiance. It also exhibits the presence of two Excited-State Quantum Phase Transitions, a static and a dynamic one. The diagonalization is performed in a extended bosonic coherent basis which enable us to reach a large number of excited states with good numerical convergence.