Do you want to publish a course? Click here

Hierarchical deep reinforcement learning controlled three-dimensional navigation of microrobots in blood vessels

68   0   0.0 ( 0 )
 Added by Yuguang Yang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Designing intelligent microrobots that can autonomously navigate and perform instructed routines in blood vessels, a complex and crowded environment with obstacles including dense cells, different flow patterns and diverse vascular geometries, can offer enormous possibilities in biomedical applications. Here we report a hierarchical control scheme that enables a microrobot to efficiently navigate and execute customizable routines in blood vessels. The control scheme consists of two highly decoupled components: a high-level controller setting short-ranged dynamic targets to guide the microrobot to follow a preset path and a low-level deep reinforcement learning (DRL) controller responsible for maneuvering microrobots towards these dynamic guiding targets. The proposed DRL controller utilizes three-dimensional (3D) convolutional neural networks and is capable of learning control policy directly from a coarse raw 3D sensory input. In blood vessels with rich configurations of red blood cells and vessel geometry, the control scheme enables efficient navigation and faithful execution of instructed routines. The control scheme is also robust to adversarial perturbations including blood flows. This study provides a proof-of-principle for designing data-driven control systems for autonomous navigation in vascular networks; it illustrates the great potential of artificial intelligence for broad biomedical applications such as target drug delivery, blood clots clear, precision surgery, disease diagnosis, and more.



rate research

Read More

Efficient navigation and precise localization of Brownian micro/nano self-propelled motor particles within complex landscapes could enable future high-tech applications involving for example drug delivery, precision surgery, oil recovery, and environmental remediation. Here we employ a model-free deep reinforcement learning algorithm based on bio-inspired neural networks to enable different types of micro/nano motors to be continuously controlled to carry out complex navigation and localization tasks. Micro/nano motors with either tunable self-propelling speeds or orientations or both, are found to exhibit strikingly different dynamics. In particular, distinct control strategies are required to achieve effective navigation in free space and obstacle environments, as well as under time constraints. Our findings provide fundamental insights into active dynamics of Brownian particles controlled using artificial intelligence and could guide the design of motor and robot control systems with diverse application requirements.
Equipping active colloidal robots with intelligence such that they can efficiently navigate in unknown complex environments could dramatically impact their use in emerging applications like precision surgery and targeted drug delivery. Here we develop a model-free deep reinforcement learning that can train colloidal robots to learn effective navigation strategies in unknown environments with random obstacles. We show that trained robot agents learn to make navigation decisions regarding both obstacle avoidance and travel time minimization, based solely on local sensory inputs without prior knowledge of the global environment. Such agents with biologically inspired mechanisms can acquire competitive navigation capabilities in large-scale, complex environments containing obstacles of diverse shapes, sizes, and configurations. This study illustrates the potential of artificial intelligence in engineering active colloidal systems for future applications and constructing complex active systems with visual and learning capability.
Most common navigation tasks in human environments require auxiliary arm interactions, e.g. opening doors, pressing buttons and pushing obstacles away. This type of navigation tasks, which we call Interactive Navigation, requires the use of mobile manipulators: mobile bases with manipulation capabilities. Interactive Navigation tasks are usually long-horizon and composed of heterogeneous phases of pure navigation, pure manipulation, and their combination. Using the wrong part of the embodiment is inefficient and hinders progress. We propose HRL4IN, a novel Hierarchical RL architecture for Interactive Navigation tasks. HRL4IN exploits the exploration benefits of HRL over flat RL for long-horizon tasks thanks to temporally extended commitments towards subgoals. Different from other HRL solutions, HRL4IN handles the heterogeneous nature of the Interactive Navigation task by creating subgoals in different spaces in different phases of the task. Moreover, HRL4IN selects different parts of the embodiment to use for each phase, improving energy efficiency. We evaluate HRL4IN against flat PPO and HAC, a state-of-the-art HRL algorithm, on Interactive Navigation in two environments - a 2D grid-world environment and a 3D environment with physics simulation. We show that HRL4IN significantly outperforms its baselines in terms of task performance and energy efficiency. More information is available at https://sites.google.com/view/hrl4in.
This paper proposes an end-to-end deep reinforcement learning approach for mobile robot navigation with dynamic obstacles avoidance. Using experience collected in a simulation environment, a convolutional neural network (CNN) is trained to predict proper steering actions of a robot from its egocentric local occupancy maps, which accommodate various sensors and fusion algorithms. The trained neural network is then transferred and executed on a real-world mobile robot to guide its local path planning. The new approach is evaluated both qualitatively and quantitatively in simulation and real-world robot experiments. The results show that the map-based end-to-end navigation model is easy to be deployed to a robotic platform, robust to sensor noise and outperforms other existing DRL-based models in many indicators.
Mobile robot navigation has seen extensive research in the last decades. The aspect of collaboration with robots and humans sharing workspaces will become increasingly important in the future. Therefore, the next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators. However, a formal definition of compliance is not straightforward. On the other hand, empowerment has been used by artificial agents to learn complicated and generalized actions and also has been shown to be a good model for biological behaviors. In this paper, we go beyond the approach of classical acf{RL} and provide our agent with intrinsic motivation using empowerment. In contrast to self-empowerment, a robot employing our approach strives for the empowerment of people in its environment, so they are not disturbed by the robots presence and motion. In our experiments, we show that our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal. An interactive user-study shows that our method is considered more social than other state-of-the-art approaches by the participants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا