Do you want to publish a course? Click here

An Offline Delegatable Cryptocurrency System

291   0   0.0 ( 0 )
 Added by Qin Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Blockchain-based cryptocurrencies, facilitating the convenience of payment by providing a decentralized online solution, have not been widely adopted so far due to slow confirmation of transactions. Offline delegation offers an efficient way to exchange coins. However, in such an approach, the coins that have been delegated confront the risk of being spent twice since the delegators behaviour cannot be restricted easily on account of the absence of effective supervision. Even if a third party can be regarded as a judge between the delegator and delegatee to secure transactions, she still faces the threat of being compromised or providing misleading assure. Moreover, the approach equipped with a third party contradicts the real intention of decentralized cryptocurrency systems. In this paper, we propose textit{DelegaCoin}, an offline delegatable cryptocurrency system to mitigate such an issue. We exploit trusted execution environments (TEEs) as decentralized virtual agents to prevent malicious delegation. In DelegaCoin, an owner can delegate his coins through offline-transactions without interacting with the blockchain network. A formal model and analysis, prototype implementation, and further evaluation demonstrate that our scheme is provably secure and practically feasible.



rate research

Read More

A $(t,n)-$ threshold signature scheme enables distributed signing among $n$ players such that any subgroup of size $t$ can sign, whereas any group with fewer players cannot. Our goal is to produce signatures that are compatible with an existing centralized signature scheme: the key generation and signature algorithm are replaced by a communication protocol between the parties, but the verification algorithm remains identical to that of a signature issued using the centralized algorithm. Starting from the threshold schemes for the ECDSA signature due to R. Gennaro and S. Goldfeder, we present the first protocol that supports multiparty signatures with an offline participant during the Key Generation Phase, without relying on a trusted third party. Following well-established approaches, we prove our scheme secure against adaptive malicious adversaries.
71 - Enes Erdin , Suat Mercan , 2021
Cryptocurrencies redefined how money can be stored and transferred among users. However, independent of the amount being sent, public blockchain-based cryptocurrencies suffer from high transaction waiting times and fees. These drawbacks hinder the wide use of cryptocurrencies by masses. To address these challenges, payment channel network concept is touted as the most viable solution to be used for micro-payments. The idea is exchanging the ownership of money by keeping the state of the accounts locally. The users inform the blockchain rarely, which decreases the load on the blockchain. Specifically, payment channel networks can provide transaction approvals in seconds by charging a nominal fee proportional to the payment amount. Such attraction on payment channel networks inspired many recent studies which focus on how to design them and allocate channels such that the transactions will be secure and efficient. However, as payment channel networks are emerging and reaching large number of users, privacy issues are becoming more relevant that raise concerns about exposing not only individual habits but also businesses revenues. In this paper, we first propose a categorization of the existing payment networks formed on top of blockchain-backed cryptocurrencies. After discussing several emerging attacks on user/business privacy in these payment channel networks, we qualitatively evaluate them based on a number of privacy metrics that relate to our case. Based on the discussions on the strengths and weaknesses of the approaches, we offer possible directions for research for the future of privacy based payment channel networks.
As the indispensable trading platforms of the ecosystem, hundreds of cryptocurrency exchanges are emerging to facilitate the trading of digital assets. While, it also attracts the attentions of attackers. A number of scam attacks were reported targeting cryptocurrency exchanges, leading to a huge mount of financial loss. However, no previous work in our research community has systematically studied this problem. In this paper, we make the first effort to identify and characterize the cryptocurrency exchange scams. We first identify over 1,500 scam domains and over 300 fake apps, by collecting existing reports and using typosquatting generation techniques. Then we investigate the relationship between them, and identify 94 scam domain families and 30 fake app families. We further characterize the impacts of such scams, and reveal that these scams have incurred financial loss of 520k US dollars at least. We further observe that the fake apps have been sneaked to major app markets (including Google Play) to infect unsuspicious users. Our findings demonstrate the urgency to identify and prevent cryptocurrency exchange scams. To facilitate future research, we have publicly released all the identified scam domains and fake apps to the community.
108 - James A. Liu 2018
The atomic swap protocol allows for the exchange of cryptocurrencies on different blockchains without the need to trust a third-party. However, market participants who desire to hold derivative assets such as options or futures would also benefit from trustless exchange. In this paper I propose the atomic swaption, which extends the atomic swap to allow for such exchanges. Crucially, atomic swaptions do not require the use of oracles. I also introduce the margin contract, which provides the ability to create leveraged and short positions. Lastly, I discuss how atomic swaptions may be routed on the Lightning Network.
Anonymity is one of the most important qualities of blockchain technology. For example, one can simply create a bitcoin address to send and receive funds without providing KYC to any authority. In general, the real identity behind cryptocurrency addresses is not known, however, some addresses can be clustered according to their ownership by analyzing behavioral patterns, allowing those with known attribution to be assigned labels. These labels may be further used for legal and compliance purposes to assist in law enforcement investigations. In this document, we discuss our methodology behind assigning attribution labels to cryptocurrency addresses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا