Do you want to publish a course? Click here

TMC-1, the starless core sulfur factory: Discovery of NCS, HCCS, H2CCS, H2CCCS, and C4S and detection of C5S

70   0   0.0 ( 0 )
 Added by Marcelino Agundez
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of the sulfur-bearing species NCS, HCCS, H2CCS, H2CCCS, and C4S for the first time in space. These molecules were found towards TMC-1 through the observation of several lines for each species. We also report the detection of C5S for the first time in a cold cloud through the observation of five lines in the 31-50 GHz range. The derived column densities are N(NCS) = (7.8 +/- 0.6)e11 cm-2, N(HCCS) = (6.8 +/- 0.6)e11 cm-2, N(H2CCS) = (7.8 +/- 0.8)e11 cm-2, N(H2CCCS) = (3.7 +/- 0.4)e11 cm-2, N(C4S) = (3.8 +/- 0.4)e10 cm-2, and N(C5S) = (5.0 +/- 1.0)e10 cm-2. The observed abundance ratio between C3S and C4S is 340, that is to say a factor of approximately one hundred larger than the corresponding value for CCS and C3S. The observational results are compared with a state-of-the-art chemical model, which is only partially successful in reproducing the observed abundances. These detections underline the need to improve chemical networks dealing with S-bearing species.



rate research

Read More

The chemical and physical evolution of starless and pre-stellar cores are of paramount importance to understanding the process of star formation. The Taurus Molecular Cloud cores TMC 1-C and TMC 1-CP share similar initial conditions and provide an excellent opportunity to understand the evolution of the pre-stellar core phase. We investigated the evolutionary stage of starless cores based on observations towards the prototypical dark cores TMC 1-C and TMC 1-CP, mapping them in the CS $3rightarrow 2$, C$^{34}$S $3rightarrow 2$, $^{13}$CS $2rightarrow 1$, DCN $1rightarrow 0$, DCN $2rightarrow 1$, DNC $1rightarrow 0$, DNC $2rightarrow 1$, DN$^{13}$C $1rightarrow 0$, DN$^{13}$C $2rightarrow 1$, N$_2$H$^+$ $1rightarrow 0$, and N$_2$D$^+$ $1rightarrow 0$ transitions. We performed a multi-transitional study of CS and its isotopologs, DCN, and DNC lines to characterize the physical and chemical properties of these cores. We studied their chemistry using the state-of-the-art gas-grain chemical code Nautilus and pseudo time-dependent models to determine their evolutionary stage. Observational diagnostics seem to indicate that TMC 1-C is in a later evolutionary stage than TMC 1-CP, with a chemical age $sim$1 Myr. TMC 1-C shows signs of being an evolved core at the onset of star formation, while TMC 1-CP appears to be in an earlier evolutionary stage due to a more recent formation or, alternatively, a collapse slowed down by a magnetic support.
We report the detection, for the first time in space, of cyano thioformaldehyde (HCSCN) and propynethial (HCSCCH) towards the starless core TMC-1. Cyano thioformaldehyde presents a series of prominent a- and b-type lines, which are the strongest previously unassigned features in our Q-band line survey of TMC-1. Remarkably, HCSCN is four times more abundant than cyano formaldehyde (HCOCN). On the other hand, HCSCCH is five times less abundant than propynal (HCOCCH). Surprisingly, we find an abundance ratio HCSCCH/HCSCN of 0.25, in contrast with most other ethynyl-cyanide pairs of molecules for which the CCH-bearing species is more abundant than the CN-bearing one. We discuss the formation of these molecules in terms of neutral-neutral reactions of S atoms with CH2CCH and CH2CN radicals as well as of CCH and CN radicals with H2CS. The calculated abundances for the sulphur-bearing species are, however, significantly below the observed values, which points to an underestimation of the abundance of atomic sulphur in the model or to missing formation reactions, such as ion-neutral reactions.
We report on the first detection of C3N- and C5N- towards the cold dark core TMC-1 in the Taurus region, using the Yebes 40 m telescope. The observed C3N/C3N- and C5N/C5N- abundance ratios are 140 and 2, respectively; that is similar to those found in the circumstellar envelope of the carbon-rich star IRC+10216. Although the formation mechanisms for the neutrals are different in interstellar (ion-neutral reactions) and circumstellar clouds (photodissociation and radical-neutral reactions), the similarity of the C3N/C3N- and C5N/C5N- abundance ratios strongly suggests a common chemical path for the formation of these anions in interstellar and circumstellar clouds. We discuss the role of radiative electronic attachment, reactions between N atoms and carbon chain anions Cn-, and that of H- reactions with HC3N and HC5N as possible routes to form CnN-. The detection of C5N- in TMC-1 gives strong support for assigning to this anion the lines found in IRC+10216, as it excludes the possibility of a metal-bearing species, or a vibrationally excited state. New sets of rotational parameters have been derived from the observed frequencies in TMC-1 and IRC+10216 for C5N- and the neutral radical C5N.
We report the detection for the first time in space of three new pure hydrocarbon cycles in TMC-1: c-C3HCCH (ethynyl cyclopropenylidene), c-C5H6 (cyclopentadiene) and c-C9H8 (indene). We derive a column density of 3.1e11 cm-2 for the former cycle and similar values, in the range (1-2)e13 cm-2, for the two latter molecules. This means that cyclopentadiene and indene, in spite of their large size, are exceptionally abundant, only a factor of five less abundant than the ubiquitous cyclic hydrocarbon c-C3H2. The high abundance found for these two hydrocarbon cycles, together with the high abundance previously found for the propargyl radical (CH2CCH) and other hydrocarbons like vinyl and allenyl acetylene (Agundez et al. 2021; Cernicharo et al. 2021a,b), start to allow us to quantify the abundant content of hydrocarbon rings in cold dark clouds and to identify the intermediate species that are probably behind the in situ bottom-up synthesis of aromatic cycles in these environments. While c-C3HCCH is most likely formed through the reaction between the radical CCH and c-C3H2, the high observed abundances of cyclopentadiene and indene are difficult to explain through currently proposed chemical mechanisms. Further studies are needed to identify how are five- and six-membered rings formed under the cold conditions of clouds like TMC-1.
We present a study of the isocyano isomers of the cyanopolyynes HC3N, HC5N, and HC7N in TMC-1 and IRC+10216 carried out with the Yebes 40m radio telescope. This study has enabled us to report the detection, for the first time in space, of HCCCCNC in TMC-1 and to give upper limits for HC6NC in the same source. In addition, the deuterated isotopologues of HCCNC and HNCCC were detected, along with all 13C substitutions of HCCNC, also for the first time in space. The abundance ratios of HC3N and HC5N, with their isomers, are very different in TMC-1 and IRC+10216, namely, N(HC5N)/N(HC4NC) is 300 and >2100, respectively. We discuss the chemistry of the metastable isomers of cyanopolyynes in terms of the most likely formation pathways and by comparing observational abundance ratios between different sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا