Do you want to publish a course? Click here

Dark-bright excitons mixing in alloyed InGaAs self-assembled quantum dots

90   0   0.0 ( 0 )
 Added by Michal Zielinski
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum dots are arguably one of the best platforms for optically accessible spin based qubits. The paramount demand of extended qubit storage time can be met by using quantum-dot-confined dark exciton: a longlived electron-hole pair with parallel spins. Despite its name the dark exciton reveals weak luminescence that can be directly measured. The origins of this optical activity remain largely unexplored. In this work, using the atomistic tight-binding method combined with configuration-interaction approach, we demonstrate that atomic-scale randomness strongly affects oscillator strength of dark excitons confined in self-assembled cylindrical InGaAs quantum dots with no need for faceting or shape-elongation. We show that this process is mediated by two mechanisms: mixing dark and bright configurations by exchange interaction, and equally important appearance of non-vanishing optical transition matrix elements that otherwise correspond to nominally forbidden transitions in a non-alloyed case. The alloy randomness has essential impact on both bright and dark exciton states, including their energy, emission intensity, and polarization angle. We conclude that, due to the atomic-scale alloy randomness, finding dots with desired dark exciton properties may require exploration of a large ensemble, similarly to how dots with low bright exciton splitting are selected for entanglement generation.

rate research

Read More

112 - Micha{l} Zielinski 2018
Excitons in alloyed nanowire quantum dots have unique spectra as shown here using atomistic calculations. The bright exciton splitting is triggered solely by alloying and despite cylindrical quantum dot shape reaches over $15~mu$eV, contrary to previous theoretical predictions, however, in line with experimental data. This splitting can however be tuned by electric field to go below $1$~$mu$eV threshold. The dark exciton optical activity is also strongly affected by alloying reaching notable $1/3500$ fraction of the bright exciton and having large out-of-plane polarized component.
203 - M. Zielinski , Y. Don , 2014
We use an atomistic model to consider the effect of shape symmetry breaking on the optical properties of self-assembled InAs/GaAs quantum dots. In particular, we investigate the energy level structure and optical activity of the lowest energy excitons in these nanostructures. We compare between quantum dots with two-fold rotational and two reflections (C2v) symmetry and quantum dots in which this symmetry was reduced to one reflection only (Cs) by introducing a facet between the quantum dots and the host material. We show that the symmetry reduction mostly affects the optical activity of the dark exciton. While in symmetric quantum dots, one of the dark exciton eigenstates has a small dipole moment polarized along the symmetry axis (growth direction) of the quantum dot, in non-symmetric ones, the two dark excitons dipole moments are predominantly cross-linearly polarized perpendicular to the growth direction and reveal pronounced polarization anisotropy. Our model calculations agree quantitatively with recently obtained experimental data.
We report on single InGaAs quantum dots embedded in a lateral electric field device. By applying a voltage we tune the neutral exciton transition into resonance with the biexciton using the quantum confined Stark effect. The results are compared to theoretical calculations of the relative energies of exciton and biexciton. Cascaded decay from the manifold of single exciton-biexciton states has been predicted to be a new concept to generate entangled photon pairs on demand without the need to suppress the fine structures splitting of the neutral exciton.
In photoluminescence spectra of symmetric [111] grown GaAs/AlGaAs quantum dots in longitudinal magnetic fields applied along the growth axis we observe in addition to the expected bright states also nominally dark transitions for both charged and neutral excitons. We uncover a strongly non-monotonous, sign changing field dependence of the bright neutral exciton splitting resulting from the interplay between exchange and Zeeman effects. Our theory shows quantitatively that these surprising experimental results are due to magnetic-field-induced pm 3/2 heavy-hole mixing, an inherent property of systems with C_3v point-group symmetry.
We study spin dynamics of excitons confined in self-assembled CdSe quantum dots by means of optical orientation in magnetic field. At zero field the exciton emission from QDs populated via LO phonon-assisted absorption shows a circular polarization of 14%. The polarization degree of the excitonic emission increases dramatically when a magnetic field is applied. Using a simple model, we extract the exciton spin relaxation times of 100 ps and 2.2 ns in the absence and presence of magnetic field, respectively. With increasing temperature the polarization of the QD emission gradually decreases. Remarkably, the activation energy which describes this decay is independent of the external magnetic field, and, therefore, of the degeneracy of the exciton levels in QDs. This observation implies that the temperature-induced enhancement of the exciton spin relaxation is insensitive to the energy level degeneracy and can be attributed to the same excited state distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا