Federated Quantum Machine Learning


Abstract in English

Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.

Download