No Arabic abstract
Color charge correlators provide fundamental information about the proton structure. In this Letter, we evaluate numerically two-point color charge correlations in a proton on the light cone including the next-to-leading order corrections due to emission or exchange of a perturbative gluon. The non-perturbative valence quark structure of the proton is modelled in a way consistent with high-$x$ proton structure data. Our results show that the correlator exhibits startlingly non-trivial behavior at large momentum transfer or central impact parameters, and that the color charge correlation depends not only on the impact parameter but also on the relative transverse momentum of the two gluon probes and their relative angle. Furthermore, from the two-point color charge correlator, we compute the dipole scattering amplitude. Its azimuthal dependence differs significantly from a impact parameter dependent McLerran-Venugopalan model based on geometry. Our results also provide initial conditions for Balitsky-Kovchegov evolution of the dipole scattering amplitude. These initial conditions depend not only on the impact parameter and dipole size vectors, but also on their relative angle and on the light-cone momentum fraction $x$ in the target.
Color charge correlations in the proton at moderately small $xsim 0.1$ are extracted from its light-cone wave function. The charge fluctuations are far from Gaussian and they exhibit interesting dependence on impact parameter and on the relative transverse momentum (or distance) of the gluon probes. We provide initial conditions for small-$x$ Balitsky-Kovchegov evolution of the dipole scattering amplitude with impact parameter and $hat r cdot hat b$ dependence, and with non-zero $C$-odd component due to three-gluon exchange. Lastly, we compute the (forward) Weizsaecker-Williams gluon distributions, including the distribution of linearly polarized gluons, up to fourth order in $A^+$. The correction due to the quartic correlator provides a transverse momentum scale, $q > 0.5$ GeV, for nearly maximal polarization.
The impact parameter dependence of color charge correlators in the proton is obtained from the light front formalism in light cone gauge. We include NLO corrections due to the $|qqqgrangle$ Fock state via light-cone perturbation theory. Near the center of the proton, the $b$-dependence of the correlations is very different from a transverse profile function. The resulting $t$-dependence of exclusive $J/Psi$ photoproduction transitions from exponential to power law at $|t| approx 1$ GeV$^2$. This prediction could be tested at upcoming DIS facilities or in nucleus-proton ultraperipheral collisions (UPCs).
We construct a general QCD light front formalism to compute many-body color charge correlators in the proton. These form factors can be extracted from deeply inelastic scattering measurements of exclusive final states in analogy to electromagnetic form factors extracted in elastic electron scattering experiments. Particularly noteworthy is the potential to extract a novel Odderon form factor, either indirectly from exclusive $J/Psi$ measurements, or directly from exclusive measurements of the $eta_c$ or tensor mesons at large Bjorken x. Besides the intrinsic information conveyed by these color charge correlators on the spatio-temporal tomography at the sub-femtoscopic scale at large x, the corresponding cumulants extend the domain of validity of McLerran-Venugopalan type weight functionals from small x and large nuclei to nucleons and light nuclei at large $x$, as well as to non-zero momentum transfer. This may significantly reduce nonperturbative systematic uncertainties in the initial conditions for QCD evolution equations at small $x$ and could be of strong relevance for the phenomenology of present and future collider experiments.
We argue that the pattern of the deviation from the Glauber approximation prediction for the centrality dependence of the rate of forward jet production observed in pA collisions at the LHC provides the first experimental evidence that parton configurations in the projectile proton containing a parton with large $x$ interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strength and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the $x$-dependent interaction strength $sigma(x)$. We find that sigma(x)sim 0.6 ~sigma_{tot}(pp) gives a good description of the x=0.6 data and may shed a light on the origin of the EMC effect.
The color memory effect is the non-abelian gauge theory analog of the gravitational memory effect, in which the passage of color radiation induces a net relative SU(3) color rotation of a pair of nearby quarks. It is proposed that this effect can be measured in the Regge limit of deeply inelastic scattering at electron-ion colliders.