Do you want to publish a course? Click here

Determination of bulk and surface properties of liquid Bi-Sn alloys using an improved quasi-lattice theory

60   0   0.0 ( 0 )
 Added by Olugbenga Oshakuade
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermodynamic properties of Bi-Sn were studied at 600 and 900K using a quasi-lattice theory. After successful fitting of Gibbs free energies of mixing and thermodynamic activities, the fitting parameters were used to investigate the enthalpy of mixing, the entropy of mixing, concentration fluctuations, Warren-Cowley short range order parameter, surface concentrations and surface tensions of the binary systems. Positive and symmetrically shaped enthalpies of mixing were observed in all composition range, while negative excess entropies of mixing were observed. Bi-Sn showed a slight preference for like-atoms as nearest neighbours in all composition range. The nature of atomic order in Bi-Sn at 600 and 900K appeared similar. The highest tendency for homocoordination exists at composition where mole fraction of Bi is about 40%. It was also observed that Bi (whose surface tension is lower than that of Sn) has the highest surface enrichment in the Bi-Sn systems. Unlike many previous applications of the quasi-lattice theory where constant values were used to approximate coordination numbers, temperature and composition-dependent coordination numbers were applied in this work.



rate research

Read More

The existing quasi-lattice theory for liquid alloys (QLT), which has been extensively used by many researchers, has been modified by incorporating the knowledge of composition and temperature-dependent coordination numbers. The modified QLT was then used to compute the enthalpy of mixing, the entropy of mixing, concentration fluctuations, Warren-Cowley short range order parameter, surface concentrations and surface tensions of liquid Al-Sn, Al-Zn and Sn-Zn systems, which are the binary sub-systems for Al-Sn-Zn. The effect of the approximation of coordination number in the existing QLT was also investigated and was found to be insignificant when coordination number is 10. This work has provided a more physically realistic quasi-lattice theory, and has contributed to the knowledge on the binary subsystems of Al-Sn-Zn and has also set a foundation for the application of quasi-lattice theory on Al-Sn-Zn and other ternary systems.
A new method for direct evaluation of both crystalline structure, bulk modulus B_0, and bulk-modulus pressure derivative B_0 of solid materials with complex crystal structures is presented. The explicit and exact results presented here permit a multidimensional polynomial fit of the total energy as a function of all relevant structure parameters to simultaneously determine the equilibrium configuration and the elastic properties. The method allows for inclusion of general (internal) structure parameters, e.g., bond lengths and angles within the unit cell, on an equal footing with the unit-cell lattice parameters. The method is illustrated by the calculation of B_0 and B_0 for a few selected materials with multiple structure parameters for which data is obtained by using first-principles density functional theory.
X-ray reflectivity measurements of the binary liquid Ga-Bi alloy reveal a dramatically different surface structure above and below the monotectic temperature $T_{mono}=222^{circ}$ C. A Gibbs-adsorbed Bi monolayer resides at the surface at both regimes. However, a 30 {AA} thick, Bi-rich wetting film intrudes between the Bi monolayer and the Ga-rich bulk for $T > T_{mono}$. The internal structure of the wetting film is determined with {AA} resolution, showing a theoretically unexpected concentration gradient and a highly diffuse interface with the bulk phase.
A 1D metallic surface state was created on an anisotropic InSb(001) surface covered with Bi. Angle-resolved photoelectron spectroscopy (ARPES) showed a 1D Fermi contour with almost no 2D distortion. Close to the Fermi level ($E_{rm F}$), the angle-integrated photoelectron spectra showed power-law scaling with the binding energy and temperature. The ARPES plot above $E_{rm F}$ obtained thanks to thermally broadened Fermi edge at room temperature showed a 1D state with continuous metallic dispersion across $E_{rm F}$ and power-law intensity suppression around $E_{rm F}$. These results strongly suggest a Tomonaga-Luttinger liquid on the Bi/InSb(001) surface.
Samarium hexaboride crystallizes in a simple cubic structure (space group #221, Pm-3m), but its properties are far from being straightforward. Initially classified as a Kondo insulator born out of its intriguing intermediate valence ground state, SmB6 has been recently predicted to be a strongly correlated topological insulator. The subsequent experimental discovery of surface states has revived the interest in SmB6, and our purpose here is to review the extensive and in many aspects perplexing experimental record of this material. We will discuss both surface and bulk properties of SmB6 with an emphasis on the role of crystal growth and sample preparation. We will also highlight the remaining mysteries and open questions in the field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا