Do you want to publish a course? Click here

Effects of coherence on temporal resolution

102   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measuring small separations between two optical sources, either in space or in time, constitute an important metrological challenge as standard intensity-only measurements fail for vanishing separations. Contrarily, it has been established that appropriate coherent mode projections can appraise arbitrarily small separations with quantum-limited precision. However, the question of whether the optical coherence brings any metrological advantage to mode projections is still a point of debate. Here, we elucidate this problem by experimentally investigating the effect of varying coherence on estimating the temporal separation between two single-photon pulses. We show that, for an accurate interpretation, special attention must be paid to properly normalize the quantum Fisher information to account for the strength of the signal. Our experiment demonstrates that coherent mode projections are optimal for any degree of coherence.



rate research

Read More

We show that temporal two-photon interference effects involving the signal and idler photons created by parametric down-conversion can be fully characterized in terms of the variations of two length parameters--called the biphoton path-length difference and the biphoton path-asymmetry- length difference--which we construct using the six different length parameters that a general two-photon interference experiment involves. We perform an experiment in which the effects of the variations of these two parameters can be independently controlled and studied. In our experimental setup, which does not involve mixing of signal and idler photons at a beam splitter, we further report observations of Hong-Ou-Mandel- (HOM-)like effects both in coincidence and in one-photon count rates. As an important consequence, we argue that the HOM and the HOM-like effects are best described as observations of how two-photon coherence changes as a function of the biphoton path- asymmetry-length difference.
We show that in parametric down-conversion the coherence properties of a temporally partially coherent pump field get entirely transferred to the down-converted entangled two-photon field. Under the assumption that the frequency-bandwidth of the down-converted signal-idler photons is much larger than that of the pump, we derive the temporal coherence functions for the down-converted field, for both infinitely-fast and time-averaged detection schemes. We show that in each scheme the coherence function factorizes into two separate coherence functions with one of them carrying the entire statistical information of the pump field. In situations in which the pump is a Gaussian Schell-model field, we derive explicit expressions for the coherence functions. Finally, we show that the concurrence of time-energy-entangled two-qubit states is bounded by the degree of temporal coherence of the pump field. This study can have important implications for understanding how correlations of the pump field manifest as two-particle entanglement as well as for harnessing energy-time entanglement for long-distance quantum communication protocols.
Spicules have been observed on the sun for more than a century, typically in chromospheric lines such as H-alpha and Ca II H. Recent work has shown that so-called type II spicules may have a role in providing mass to the corona and the solar wind. In chromospheric filtergrams these spicules are not seen to fall back down, and they are shorter-lived and more dynamic than the spicules that have been classically reported in ground-based observations. Observations of type II spicules with Hinode show fundamentally different properties from what was previously measured. In earlier work we showed that these dynamic type II spicules are the most common type, a view that was not properly identified by early observations.The aim of this work is to investigate the effects of spatio-temporal resolution in the classical spicule measurements. Making use of Hinode data degraded to match the observing conditions of older ground-based studies, we measure the properties of spicules with a semi-automated algorithm. These results are then compared to measurements using the original Hinode data. We find that degrading the data has a significant effect on the measured properties of spicules. Most importantly, the results from the degraded data agree well with older studies (e.g. mean spicule duration more than 5 minutes, and upward apparent velocities of about 25 km/s). These results illustrate how the combination of spicule superposition, low spatial resolution and cadence affect the measured properties of spicules, and that previous measurements can be misleading.
We characterize the conditions under which a multi-time quantum process with a finite temporal resolution can be approximately described by an equilibrium one. By providing a generalization of the notion of equilibration on average, where a system remains closed to a fixed equilibrium for most times, to one which can be operationally assessed at multiple times, we place an upper-bound on a new observable distinguishability measure comparing a multi-time process with a finite temporal resolution against a fixed equilibrium one. While the same conditions on single-time equilibration, such as a large occupation of energy levels in the initial state remain necessary, we obtain genuine multi-time contributions depending on the temporal resolution of the process and the amount of disturbance of the observers operations on it.
It is usually considered that the spectrum of an optical cavity coupled to an atomic medium does not exhibit a normal-mode splitting unless the system satisfies the strong coupling condition, meaning the Rabi frequency of the coherent coupling exceeds the decay rates of atom and cavity excitations. Here we show that this need not be the case, but depends on the way in which the coupled system is probed. Measurements of the reflection of a probe laser from the input mirror of an overdamped cavity reveal an avoided crossing in the spectrum which is not observed when driving the atoms directly and measuring the Purcell-enhanced cavity emission. We understand these observations by noting a formal correspondence with electromagnetically-induced transparency of a three-level atom in free space, where our cavity acts as the absorbing medium and the coupled atoms play the role of the control field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا