Do you want to publish a course? Click here

On the Value of Preview Information For Safety Control

95   0   0.0 ( 0 )
 Added by Zexiang Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Incorporating predictions of external inputs, which can otherwise be treated as disturbances, has been widely studied in control and computer science communities. These predictions are commonly referred to as preview in optimal control and lookahead in temporal logic synthesis. However, little work has been done for analyzing the value of preview information for safety control for systems with continuous state spaces. In this work, we start from showing general properties for discrete-time nonlinear systems with preview and strategies on how to determine a good preview time, and then we study a special class of linear systems, called systems in Brunovsky canonical form, and show special properties for this class of systems. In the end, we provide two numerical examples to further illustrate the value of preview in safety control.

rate research

Read More

178 - Zexiang Liu , Necmiye Ozay 2019
This paper considers the problem of safety controller synthesis for systems equipped with sensor modalities that can provide preview information. We consider switched systems where switching mode is an external signal for which preview information is available. In particular, it is assumed that the sensors can notify the controller about an upcoming mode switch before the switch occurs. We propose preview automaton, a mathematical construct that captures both the preview information and the possible constraints on switching signals. Then, we study safety control synthesis problem with preview information. An algorithm that computes the maximal invariant set in a given mode-dependent safe set is developed. These ideas are demonstrated on two case studies from autonomous driving domain.
125 - Yudan Liu , Hamid Ossareh 2021
This paper presents a constraint management strategy based on Scalar Reference Governors (SRG) to enforce output, state, and control constraints while taking into account the preview information of the reference and/or disturbances signals. The strategy, referred to as the Preview Reference Governor (PRG), can outperform SRG while maintaining the highly-attractive computational benefits of SRG. However, as it is shown, the performance of PRG may suffer if large preview horizons are used. An extension of PRG, referred to as Multi-horizon PRG, is proposed to remedy this issue. Quantitative comparisons between SRG, PRG, and Multi-horizon PRG on a one-link robot arm example are presented to illustrate their performance and computation time. Furthermore, extensions of PRG are presented to handle systems with disturbance preview and multi-input systems. The robustness of PRG to parametric uncertainties and inaccurate preview information is also explored.
This paper deals with the lateral control of a convoy of autonomous and connected following vehicles (ACVs) for executing an Emergency Lane Change (ELC) maneuver. Typically, an ELC maneuver is triggered by emergency cues from the front or the end of convoy as a response to either avoiding an obstacle or making way for other vehicles to pass. From a safety viewpoint, connectivity of ACVs is essential as it entails obtaining or exchanging information about other ACVs in the convoy. This paper assumes that ACVs have reliable connectivity and that every following ACV has the information about GPS position traces of the lead and immediately preceding vehicles in the convoy. This information provides a discretized preview of the trajectory to be tracked. Based on the available information, this article focuses on two schemes for synthesizing lateral control of ACVs based on(a) a single composite ELC trajectory that fuses lead and preceding vehicles GPS traces and (b) separate ELC trajectories based on preview data of preceding and lead vehicles. The former case entails the construction of a single composite ELC trajectory, determine the cross-track error, heading and yaw rate errors with respect to this trajectory and synthesize a lateral control action. The latter case entails the construction of two separate trajectories corresponding to the lead vehicles and preceding vehicles data separately and the subsequent computation of two sets of associated errors and lateral control actions and combining them to provide a steering command. Numerical and experimental results corroborate the effectiveness of these two schemes.
Increasing penetration of renewable energy introduces significant uncertainty into power systems. Traditional simulation-based verification methods may not be applicable due to the unknown-but-bounded feature of the uncertainty sets. Emerging set-theoretic methods have been intensively investigated to tackle this challenge. The paper comprehensively reviews these methods categorized by underlying mathematical principles, that is, set operation-based methods and passivity-based methods. Set operation-based methods are more computationally efficient, while passivity-based methods provide semi-analytical expression of reachable sets, which can be readily employed for control. Other features between different methods are also discussed and illustrated by numerical examples. A benchmark example is presented and solved by different methods to verify consistency.
This paper develops a safety analysis method for stochastic systems that is sensitive to the possibility and severity of rare harmful outcomes. We define risk-sensitive safe sets as sub-level sets of the solution to a non-standard optimal control problem, where a random maximum cost is assessed using the Conditional Value-at-Risk (CVaR) functional. The solution to the control problem represents the maximum extent of constraint violation of the state trajectory, averaged over the $alphacdot 100$% worst cases, where $alpha in (0,1]$. This problem is well-motivated but difficult to solve in a tractable fashion because temporal decompositions for risk functionals generally depend on the history of the systems behavior. Our primary theoretical contribution is to derive under-approximations to risk-sensitive safe sets, which are computationally tractable. Our method provides a novel, theoretically guaranteed, parameter-dependent upper bound to the CVaR of a maximum cost without the need to augment the state space. For a fixed parameter value, the solution to only one Markov decision process problem is required to obtain the under-approximations for any family of risk-sensitivity levels. In addition, we propose a second definition for risk-sensitive safe sets and provide a tractable method for their estimation without using a parameter-dependent upper bound. The second definition is expressed in terms of a new coherent risk functional, which is inspired by CVaR. We demonstrate our primary theoretical contribution using numerical examples of a thermostatically controlled load system and a stormwater system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا