Do you want to publish a course? Click here

Data-driven Coarse-grained Modeling of Non-equilibrium Systems

63   0   0.0 ( 0 )
 Added by Zhan Ma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. However, it usually experiences significantly altered dynamics due to loss of degrees of freedom upon coarse-graining. To establish CG models that can faithfully preserve dynamics, previous efforts mainly focused on equilibrium systems. In contrast, various soft matter systems are known out of equilibrium. Therefore, the present work concerns non-equilibrium systems and enables accurate and efficient CG modeling that preserves non-equilibrium dynamics and is generally applicable to any non-equilibrium process and any observable of interest. To this end, the dynamic equation of a CG variable is built in the form of the non-stationary generalized Langevin equation (nsGLE) to account for the dependence of non-equilibrium processes on the initial conditions, where the two-time memory kernel is determined from the data of the two-time auto-correlation function of the non-equilibrium trajectory-averaged observable of interest. By embedding the non-stationary non-Markovian process in an extended stochastic framework, an explicit form of the non-stationary random noise in the nsGLE is introduced, and the cost is significantly reduced for solving the nsGLE to predict the non-equilibrium dynamics of the CG variable. To prove and exploit the equivalence of the nsGLE and extended dynamics, the memory kernel is parameterized in a two-time exponential expansion. A data-driven hybrid optimization process is proposed for the parameterization, a non-convex and high-dimensional optimization problem.



rate research

Read More

64 - Zhan Ma , Shu Wang , Minhee Kim 2021
The present work concerns the transferability of coarse-grained (CG) modeling in reproducing the dynamic properties of the reference atomistic systems across a range of parameters. In particular, we focus on implicit-solvent CG modeling of polymer solutions. The CG model is based on the generalized Langevin equation, where the memory kernel plays the critical role in determining the dynamics in all time scales. Thus, we propose methods for transfer learning of memory kernels. The key ingredient of our methods is Gaussian process regression. By integration with the model order reduction via proper orthogonal decomposition and the active learning technique, the transfer learning can be practically efficient and requires minimum training data. Through two example polymer solution systems, we demonstrate the accuracy and efficiency of the proposed transfer learning methods in the construction of transferable memory kernels. The transferability allows for out-of-sample predictions, even in the extrapolated domain of parameters. Built on the transferable memory kernels, the CG models can reproduce the dynamic properties of polymers in all time scales at different thermodynamic conditions (such as temperature and solvent viscosity) and for different systems with varying concentrations and lengths of polymers.
The combination of high-dimensionality and disparity of time scales encountered in many problems in computational physics has motivated the development of coarse-grained (CG) models. In this paper, we advocate the paradigm of data-driven discovery for extract- ing governing equations by employing fine-scale simulation data. In particular, we cast the coarse-graining process under a probabilistic state-space model where the transition law dic- tates the evolution of the CG state variables and the emission law the coarse-to-fine map. The directed probabilistic graphical model implied, suggests that given values for the fine- grained (FG) variables, probabilistic inference tools must be employed to identify the cor- responding values for the CG states and to that end, we employ Stochastic Variational In- ference. We advocate a sparse Bayesian learning perspective which avoids overfitting and reveals the most salient features in the CG evolution law. The formulation adopted enables the quantification of a crucial, and often neglected, component in the CG process, i.e. the pre- dictive uncertainty due to information loss. Furthermore, it is capable of reconstructing the evolution of the full, fine-scale system. We demonstrate the efficacy of the proposed frame- work in high-dimensional systems of random walkers.
Obtaining coarse-grained models that accurately incorporate finite-size effects is an important open challenge in the study of complex, multi-scale systems. We apply Langevin regression, a recently developed method for finding stochastic differential equation (SDE) descriptions of realistically-sampled time series data, to understand finite-size effects in the Kuramoto model of coupled oscillators. We find that across the entire bifurcation diagram, the dynamics of the Kuramoto order parameter are statistically consistent with an SDE whose drift term has the form predicted by the Ott-Antonsen ansatz in the $Nto infty$ limit. We find that the diffusion term is nearly independent of the bifurcation parameter, and has a magnitude decaying as $N^{-1/2}$, consistent with the central limit theorem. This shows that the diverging fluctuations of the order parameter near the critical point are driven by a bifurcation in the underlying drift term, rather than increased stochastic forcing.
145 - Yang Liu , Rui Hu , Adam Kraus 2021
Advanced nuclear reactors often exhibit complex thermal-fluid phenomena during transients. To accurately capture such phenomena, a coarse-mesh three-dimensional (3-D) modeling capability is desired for modern nuclear-system code. In the coarse-mesh 3-D modeling of advanced-reactor transients that involve flow and heat transfer, accurately predicting the turbulent viscosity is a challenging task that requires an accurate and computationally efficient model to capture the unresolved fine-scale turbulence. In this paper, we propose a data-driven coarse-mesh turbulence model based on local flow features for the transient analysis of thermal mixing and stratification in a sodium-cooled fast reactor. The model has a coarse-mesh setup to ensure computational efficiency, while it is trained by fine-mesh computational fluid dynamics (CFD) data to ensure accuracy. A novel neural network architecture, combining a densely connected convolutional network and a long-short-term-memory network, is developed that can efficiently learn from the spatial-temporal CFD transient simulation results. The neural network model was trained and optimized on a loss-of-flow transient and demonstrated high accuracy in predicting the turbulent viscosity field during the whole transient. The trained models generalization capability was also investigated on two other transients with different inlet conditions. The study demonstrates the potential of applying the proposed data-driven approach to support the coarse-mesh multi-dimensional modeling of advanced reactors.
We explore the derivation of distributed parameter system evolution laws (and in particular, partial differential operators and associated partial differential equations, PDEs) from spatiotemporal data. This is, of course, a classical identification problem; our focus here is on the use of manifold learning techniques (and, in particular, variations of Diffusion Maps) in conjunction with neural network learning algorithms that allow us to attempt this task when the dependent variables, and even the independent variables of the PDE are not known a priori and must be themselves derived from the data. The similarity measure used in Diffusion Maps for dependent coarse variable detection involves distances between local particle distribution observations; for independent variable detection we use distances between local short-time dynamics. We demonstrate each approach through an illustrative established PDE example. Such variable-free, emergent space identification algorithms connect naturally with equation-free multiscale computation tools.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا