Global Solutions of Semilinear Parabolic Equations with Drift Term on Riemannian Manifolds


Abstract in English

We study existence and non-existence of global solutions to the semilinear heat equation with a drift term and a power-like source term, on Cartan-Hadamard manifolds. Under suitable assumptions on Ricci and sectional curvatures, we show that global solutions cannot exists if the initial datum is large enough. Furthermore, under appropriate conditions on the drift term, global existence is obtained, if the initial datum is sufficiently small. We also deal with Riemannian manifolds whose Ricci curvature tends to zero at infinity sufficiently fast.

Download