Do you want to publish a course? Click here

First-principles derivation and properties of density-functional average-atom models

75   0   0.0 ( 0 )
 Added by Timothy Callow
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Finite-temperature Kohn--Sham density-functional theory (KS-DFT) is a widely-used method in warm dense matter (WDM) simulations and diagnostics. Unfortunately, full KS-DFT-molecular dynamics models scale unfavourably with temperature and there remains uncertainty regarding the performance of existing approximate exchange-correlation (XC) functionals under WDM conditions. Of particular concern is the expected explicit dependence of the XC functional on temperature, which is absent from most approximations. Average-atom (AA) models, which significantly reduce the computational cost of KS-DFT calculations, have therefore become an integral part of WDM modelling. In this paper, we present a derivation of a first-principles AA model from the fully-interacting many-body Hamiltonian, carefully analysing the assumptions made and terms neglected in this reduction. We explore the impact of different choices within this model -- such as boundary conditions and XC functionals -- on common properties in WDM, for example equation-of-state data. Furthermore, drawing upon insights from ground-state KS-DFT, we speculate on likely sources of error in KS-AA models and possible strategies for mitigating against such errors.



rate research

Read More

Using first principles calculations, we show the high hydrogen storage capacity of a new class of compounds, metalloboranes. Metalloboranes are transition metal (TM) and borane compounds that obey a novel-bonding scheme. We have found that the transition metal atoms can bind up to 10 H2 molecules.
Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications, however progress towards this end has been impeded by the lack of a first principles approach that quantifies light-matter interactions in these systems, and which would allow the formulation of molecular design rules. Here we develop such a first principles approach, quantifying light-matter interactions. We exemplify our approach by studying variants of the conjugated polymer polydiacetylene, and we show that a large polymer conjugation length is critical towards strong exciton-photon coupling, hence underlying the importance of pure structures without static disorder. By comparing to our experimental reflectivity measurements, we show that the coupling of excitons to vibrations, manifested by phonon side bands in the absorption, has a strong impact on the magnitude of light-matter coupling over a range of frequencies. Our approach opens the way towards a deeper understanding of polaritons in organic materials, and we highlight that a quantitatively accurate calculation of the exciton-photon interaction would require accounting for all sources of disorder self-consistently.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs. This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.
A tetragonal phase is predicted for Hf2O3 and Zr2O3 using density functional theory. Starting from atomic and unit cell relaxations of substoichiometric monoclinic HfO2 and ZrO2, such tetragonal structures are only reached at zero temperature by introducing the oxygen vacancy pair with the lowest formation energy. The tetragonal Hf2O3 and Zr2O3 structures belong to space group P-4m2 and are more stable than their corundum structure counterparts. These phases are semi-metallic, as confirmed through further G0W0 calculations. The carrier concentrations are estimated to be 1.77E21 cm^{-3} for both electrons and holes in tetragonal Hf2O3, and 1.75E21 cm^{-3} for both electrons and holes in tetragonal Zr2O3. The tetragonal Hf2O3 phase is probably related to the low resistivity state of hafnia-based resistive random access memory (RRAM).
129 - H. Sims 2009
We report a study of the anisotropic exchange interactions in bulk CrO_2 calculated from first principles within density functional theory. We determine the exchange coupling energies, using both the experimental lattice parameters and those obtained within DFT, within a modified Heisenberg model Hamiltonian in two ways. We employ a supercell method in which certain spins within a cell are rotated and the energy dependence is calculated and a spin-spiral method that modifies the periodic boundary conditions of the problem to allow for an overall rotation of the spins between unit cells. Using the results from each of these methods, we calculate the spin-wave stiffness constant D from the exchange energies using the magnon dispersion relation. We employ a Monte Carlo method to determine the DFT-predicted Curie temperature from these calculated energies and compare with accepted values. Finally, we offer an evaluation of the accuracy of the DFT-based methods and suggest implications of the competing ferro- and antiferromagnetic interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا