An $SU(4)$ chiral spin liquid and quantized dipole Hall effect in moire bilayers


Abstract in English

Motivated by the recent proposal of realizing an SU(4) Hubbard model on triangular moire superlattices, we present a DMRG study of an $SU(4)$ spin model obtained in the limit of large repulsion for integer filling $ u_T=1,3$. We retain terms in the $t/U$ expansion up to $O(frac{t^3}{U^2})$ order, that generates nearest-neighbor exchange $J$, as well as an additional three-site ring exchange term, $K$, which is absent in the SU(2) S=1/2 case. For filling $ u_T=3$, when increasing the three-site ring exchange term $K sim frac{t^3}{U^2}$, we identify three different phases: a spin-symmetric crystal, an $SU(4)_1$ chiral spin liquid (CSL) and a decoupled one dimensional chain (DC) phase. The CSL phase exists at intermediate coupling: $U/t in [11.3,,22.9]$. The sign of $K$ is crucial to stabilizing the CSL and the DC phase. For filling $ u_T=1$ with the opposite sign of $K$, the spin-symmetric crystal phase survives to very large $K$. We propose to search for the CSL phase in moire bilayers. For example, in twisted AB stacked transition metal dichalcogenide (TMD) bilayers, the $SU(4)$ spin is formed by layer pseudospin combined with the real spin (locked to valley). The layer pseudospin carries an electric dipole moment in $z$ direction, thus the CSL is really a dipole-spin liquid, with quantum fluctuations in both the electric moment and magnetic moment . The CSL phase spontaneously breaks the time reversal symmetry and shows a quantum anomalous Hall effect in spin transport and dipole transport. Smoking gun evidence for the CSL could be obtained through measurement of the quantized dipole Hall effect in counter-flow transport.

Download