Do you want to publish a course? Click here

Faster Coherent Quantum Algorithms for Phase, Energy, and Amplitude Estimation

100   0   0.0 ( 0 )
 Added by Patrick Rall
 Publication date 2021
  fields Physics
and research's language is English
 Authors Patrick Rall




Ask ChatGPT about the research

We consider performing phase estimation under the following conditions: we are given only one copy of the input state, the input state does not have to be an eigenstate of the unitary, and the state must not be measured. Most quantum estimation algorithms make assumptions that make them unsuitable for this coherent setting, leaving only the textbook approach. We present novel algorithms for phase, energy, and amplitude estimation that are both conceptually and computationally simpler than the textbook method, featuring both a smaller query complexity and ancilla footprint. They do not require a quantum Fourier transform, and they do not require a quantum sorting network to compute the median of several estimates. Instead, they use block-encoding techniques to compute the estimate one bit at a time, performing all amplification via singular value transformation. These improved subroutines accelerate the performance of quantum Metropolis sampling and quantum Bayesian inference.



rate research

Read More

This paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists of many controlled amplification operations followed by a quantum Fourier transform. However, the whole procedure is hard to implement with current and near-term quantum computers. In this paper, we propose a quantum amplitude estimation algorithm without the use of expensive controlled operations; the key idea is to utilize the maximum likelihood estimation based on the combined measurement data produced from quantum circuits with different numbers of amplitude amplification operations. Numerical simulations we conducted demonstrate that our algorithm asymptotically achieves nearly the optimal quantum speedup with a reasonable circuit length.
Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to the conventional quantum phase estimation algorithm for estimating the ground and excited-state energies of a quantum many-body system. While QKSD algorithms have typically relied on using the Hadamard test for estimating Krylov subspace matrix elements of the form, $langle phi_i|e^{-ihat{H}tau}|phi_j rangle$, the associated quantum circuits require an ancilla qubit with controlled multi-qubit gates that can be quite costly for near-term quantum hardware. In this work, we show that a wide class of Hamiltonians relevant to condensed matter physics and quantum chemistry contain symmetries that can be exploited to avoid the use of the Hadamard test. We propose a multi-fidelity estimation protocol that can be used to compute such quantities showing that our approach, when combined with efficient single-fidelity estimation protocols, provides a substantial reduction in circuit depth. In addition, we develop a unified theory of quantum Krylov subspace algorithms and present three new quantum-classical algorithms for the ground and excited-state energy estimation problem, where each new algorithm provides various advantages and disadvantages in terms of total number of calls to the quantum computer, gate depth, classical complexity, and stability of the generalized eigenvalue problem within the Krylov subspace.
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system $Ax = b$, we show that there is a classical algorithm that outputs a data structure for $x$ allowing sampling and querying to the entries, where $x$ is such that $|x - A^{-1}b|leq epsilon |A^{-1}b|$. This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is $widetilde{O}(kappa_F^6 kappa^2/epsilon^2 )$, where $kappa_F = |A|_F|A^{-1}|$ and $kappa = |A||A^{-1}|$. This improves the previous best algorithm [Gily{e}n, Song and Tang, arXiv:2009.07268] of complexity $widetilde{O}(kappa_F^6 kappa^6/epsilon^4)$. Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when $A$ is row sparse, this method already returns an approximate solution $x$ in time $widetilde{O}(kappa_F^2)$, while the best quantum algorithm known returns $ket{x}$ in time $widetilde{O}(kappa_F)$ when $A$ is stored in the QRAM data structure. As a result, assuming access to QRAM and if $A$ is row sparse, the speedup based on current quantum algorithms is quadratic.
74 - John Gough 2016
We derive the form of the quantum filter equation describing the continuous observation of the phase of a quantum system in an arm of an interferometer via non-demolition measurements when the statistics of an input field used for the indirect measurement are in a general coherent state. Both quadrature homodyne detection and photon-counting dection schemes are covered, and we solve the linearized filter for a specific application.
In this paper we derive from simple and reasonable assumptions a Gaussian noise model for NISQ Quantum Amplitude Estimation (QAE). We provide results from QAE run on various IBM superconducting quantum computers and Honeywells H1 trapped-ion quantum computer to show that the proposed model is a good fit for real-world experimental data. We then give an example of how to embed this noise model into any NISQ QAE algorithm, such that the amplitude estimation is noise-aware.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا