A recent paper by Agelas [Generalized Riemann Hypothesis, 2019, hal-00747680v3] claims to prove the Generalized Riemann Hypothesis (GRH) and, as a special case, the Riemann Hypothesis (RH). We show that the proof given by Agelas contains an error. In particular, Lemma 2.3 of Agelas is false. This Lemma 2.3 is a generalisation of Theorem 1 of Vassilev-Missana [A note on prime zeta function and Riemann zeta function, Notes on Number Theory and Discrete Mathematics, 22, 4 (2016), 12-15]. We show by several independent methods that Theorem 1 of Vassilev-Missana is false. We also show that Theorem 2 of Vassilev-Missana is false. This note has two aims. The first aim is to alert other researchers to these errors so they do not rely on faulty results in their own work. The second aim is pedagogical - we hope to show how these errors could have been detected earlier, which may suggest how similar errors can be avoided, or at least detected at an early stage.