We introduce and study a fractional version of the Skellam process of order $k$ by time-changing it with an independent inverse stable subordinator. We call it the fractional Skellam process of order $k$ (FSPoK). An integral representation for its one-dimensional distributions and their governing system of fractional differential equations are obtained. We derive the probability generating function, mean, variance and covariance of the FSPoK which are utilized to establish its long-range dependence property. Later, we considered two time-chang