No Arabic abstract
The Next Generation Very Large Array (ngVLA) has excellent capabilities to unveil various dynamical and chemical processes in massive star formation at the unexplored innermost regions. Based on the recent observations of ALMA/VLA as well as theoretical predictions, we propose several intriguing topics in massive star formation from the perspective of the ngVLA. In the disk scale of $lesssim$ 100 au around massive protostars, dust grains are expected to be destructed/sublimated because the physical conditions of temperature, shocks, and radiation are much more intense than those in the envelopes, which are typically observed as hot cores. The high sensitivity and resolution of the ngVLA will enable us to detect the gaseous refractories released by dust destruction, e.g., SiO, NaCl, and AlO, which trace disk kinematics and give new insights into the metallic elements in star-forming regions, i.e., astromineralogy. The multi-epoch survey by the ngVLA will provide demographics of forming massive multiples with separations of $lesssim$ 10 au with their proper motion. Combining with observations of refractory molecular lines and hydrogen recombination lines, we can reproduce the three-dimensional orbital motions of massive proto-binaries. Moreover, the 1-mas resolution of the ngVLA could possibly take the first-ever picture of the photospheric surface of an accreting protostar, if it is bloated to the au scale by the high accretion rates of mass and thermal energy.
The magnetic field plays an important role in every stage of the star-formation process from the collapse of the initial protostellar core to the stars arrival on the main sequence. Consequently, the goal of this science case is to explore a wide range of magnetic phenomena that can be investigated using the polarization capabilities of the Next Generation Very Large Array (ngVLA). These include (1) magnetic fields in protostellar cores via polarized emission from aligned dust grains, including in regions optically thick at wavelengths observable by the Atacama Large Millimeter/submillimeter Array (ALMA); (2) magnetic fields in both protostellar cores and molecular outflows via spectral-line polarization from the Zeeman and Goldreich-Kylafis effects; (3) magnetic fields in protostellar jets via polarized synchrotron emission; and (4) gyrosynchrotron emission from magnetospheres around low-mass stars.
We present high resolution (0.2, 1000 AU) 1.3 mm ALMA observations of massive infrared dark cloud clump, G028.37+00.07-C1, thought to harbor the early stages of massive star formation. Using $rm N_2D^+$(3-2) we resolve the previously identified C1-S core, separating the bulk of its emission from two nearby protostellar sources. C1-S is thus identified as a massive ($sim50:M_odot$), compact ($sim0.1:$pc diameter) starless core, e.g., with no signs of outflow activity. Being highly deuterated, this is a promising candidate for a pre-stellar core on the verge of collapse. An analysis of its dynamical state indicates a sub-virial velocity dispersion compared to a trans-Alfvenic turbulent core model. However, virial equilibrium could be achieved with sub-Alfvenic conditions involving $sim2:$mG magnetic field strengths.
We study the formation of massive Population III binary stars using a newly developed radiation hydrodynamics code with the adaptive mesh refinement and adaptive ray-tracing methods. We follow the evolution of a typical primordial star-forming cloud obtained from a cosmological hydrodynamics simulation. Several protostars form as a result of disk fragmentation and grow in mass by the gas accretion, which is finally quenched by the radiation feedback from the protostars. Our code enables us, for the first time, to consider the feedback by both the ionizing and dissociating radiation from the multiple protostars, which is essential for self-consistently determining their final masses. At the final step of the simulation, we observe a very wide ($gtrsim 10^4,mathrm{au}$) binary stellar system consisting of $60$ and $70,M_odot$ stars. One of the member stars also has two smaller mass ($10,M_odot$) companion stars orbiting at $200$ and $800,mathrm{au}$, making up a mini-triplet system. Our results suggest that massive binary or multiple systems are common among Population III stars.
Imaging the bright maser emission produced by several molecular species at centimeter wavelengths is an essential tool for understanding the process of massive star formation because it provides a way to probe the kinematics of dense molecular gas at high angular resolution. Unimpeded by the high dust optical depths that affect shorter wavelength observations, the high brightness temperature of these emission lines offers a way to resolve accretion and outflow motions down to scales as fine as $sim$1-10 au in deeply embedded Galactic star-forming regions, and at sub-pc scales in nearby galaxies. The Next Generation Very Large Array will provide the capabilities needed to fully exploit these powerful tracers.
We address the problem of the origin of massive stars, namely the origin, path and timescale of the mass flows that create them. Based on extensive numerical simulations, we propose a scenario where massive stars are assembled by large-scale, converging, inertial flows that naturally occur in supersonic turbulence. We refer to this scenario of massive-star formation as the Inertial-Inflow Model. This model stems directly from the idea that the mass distribution of stars is primarily the result of turbulent fragmentation. Under this hypothesis, the statistical properties of the turbulence determine the formation timescale and mass of prestellar cores, posing definite constraints on the formation mechanism of massive stars. We quantify such constraints by the analysis of a simulation of supernova-driven turbulence in a 250-pc region of the interstellar medium, describing the formation of hundreds of massive stars over a time of approximately 30 Myr. Due to the large size of our statistical sample, we can say with full confidence that massive stars in general do not form from the collapse of massive cores, nor from competitive accretion, as both models are incompatible with the numerical results. We also compute synthetic continuum observables in Herschel and ALMA bands. We find that, depending on the distance of the observed regions, estimates of core mass based on commonly-used methods may exceed the actual core masses by up to two orders of magnitude, and that there is essentially no correlation between estimated and real core masses.