Do you want to publish a course? Click here

Gelfand-Tsetlin Bases of representations for super Yangian and quantum affine superalgebra

92   0   0.0 ( 0 )
 Added by Kang Lu
 Publication date 2021
  fields
and research's language is English
 Authors Kang Lu




Ask ChatGPT about the research

We give explicit actions of Drinfeld generators on Gelfand-Tsetlin bases of super Yangian modules associated with skew Young diagrams. In particular, we give another proof that these representations are irreducible. We study irreducible tame $mathrm Y(mathfrak{gl}_{1|1})$-modules and show that a finite-dimensional irreducible $mathrm Y(mathfrak{gl}_{1|1})$-module is tame if and only if it is thin. We also give the analogous statements for quantum affine superalgebra of type A.



rate research

Read More

180 - Ying Xu , Ruibin Zhang 2017
Let Uq(g) be the quantum affine superalgebra associated with an affine Kac-Moody superalgebra g which belongs to the three series osp(1|2n)^(1),sl(1|2n)^(2) and osp(2|2n)^(2). We develop vertex operator constructions for the level 1 irreducible integrable highest weight representations and classify the finite dimensional irreducible representations of Uq(g). This makes essential use of the Drinfeld realisation for Uq(g), and quantum correspondences between affine Kac-Moody superalgebras, developed in earlier papers.
In their study of the equivariant K-theory of the generalized flag varieties $G/P$, where $G$ is a complex semisimple Lie group, and $P$ is a parabolic subgroup of $G$, Lenart and Postnikov introduced a combinatorial tool, called the alcove paths model. It provides a model for the highest weight crystals with dominant integral highest weights, generalizing the model by semistandard Young tableaux. In this paper, we prove a simple and explicit formula describing the crystal isomorphism between the alcove paths model and the Gelfand-Tsetlin patterns model for type $A$.
180 - Chun-Ju Lai , Li Luo 2015
In 1990 Beilinson, Lusztig and MacPherson provided a geometric realization of modified quantum $mathfrak{gl}_n$ and its canonical basis. A key step of their work is a construction of a monomial basis. Recently, Du and Fu provided an algebraic construction of the canonical basis for modified quantum affine $mathfrak{gl}_n$, which among other results used an earlier construction of monomial bases using Ringel-Hall algebra of the cyclic quiver. In this paper, we give an elementary algebraic construction of a monomial basis for affine Schur algebras and modified quantum affine $mathfrak{gl}_n$.
131 - Huanchen Bao , Weiqiang Wang , 2018
We generalize a construction in [BW18] (arXiv:1610.09271) by showing that the tensor product of a based $textbf{U}^{imath}$-module and a based $textbf{U}$-module is a based $textbf{U}^{imath}$-module. This is then used to formulate a Kazhdan-Lusztig theory for an arbitrary parabolic BGG category $mathcal{O}$ of the ortho-symplectic Lie superalgebras, extending a main result in [BW13] (arXiv:1310.0103).
The goal of this work is to provide an elementary construction of the canonical basis $mathbf B(w)$ in each quantum Schubert cell~$U_q(w)$ and to establish its invariance under modified Lusztigs symmetries. To that effect, we obtain a direct characterization of the upper global basis $mathbf B^{up}$ in terms of a suitable bilinear form and show that $mathbf B(w)$ is contained in $mathbf B^{up}$ and its large part is preserved by modified Lusztigs symmetries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا