Do you want to publish a course? Click here

Anti-$k_T$ jet function at next-to-next-to-leading order

213   0   0.0 ( 0 )
 Added by Xiaohui Liu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Jets constructed via clustering algorithms (e.g., anti-$k_T$, soft-drop) have been proposed for many precision measurements, such as the strong coupling $alpha_s$ and the nucleon intrinsic dynamics. However, the theoretical accuracy is affected by missing QCD corrections at higher orders for the jet functions in the associated factorization theorems. Their calculation is complicated by the jet clustering procedure. In this work, we propose a method to evaluate jet functions at higher orders in QCD. The calculation involves the phase space sector decomposition with suitable soft subtractions. As a concrete example, we present the quark-jet function using the anti-$k_T$ algorithm with E-scheme recombination at next-to-next-to-leading order.



rate research

Read More

We report a calculation of the perturbative matching coefficients for the transverse-momentum-dependent parton distribution functions for quark at the next-to-next-to-next-to-leading order in QCD, which involves calculation of non-standard Feynman integrals with rapidity divergence. We introduce a set of generalized Integration-By-Parts equations, which allows an algorithmic evaluation of such integrals using the machinery of modern Feynman integral calculation.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
We present the first calculation of the next-to-next-to-leading order threshold soft function for top quark pair production at hadron colliders, with full velocity dependence of the massive top quarks. Our results are fully analytic, and can be entirely written in terms of generalized polylogarithms. The scale-dependence of our result coincides with the well-known two-loop anomalous dimension matrix including the three-parton correlations, which at the two-loop order only appear when more than one massive partons are involved in the scattering process. In the boosted limit, our result exhibits the expected factorization property of mass logarithms, which leads to a consistent extraction of the soft fragmentation function. The next-to-next-to-leading order soft function obtained in this paper is an important ingredient for threshold resummation at the next-to-next-to-next-to-leading logarithmic accuracy.
130 - G. Beuf , H. Hanninen , T. Lappi 2020
Deep inelastic scattering (DIS) total cross section data at small-x as measured by the HERA experiments is well described by Balitsky-Kovchegov (BK) evolution in the leading order dipole picture. Recently the full Next-to-Leading Order (NLO) dipole picture total cross sections have become available for DIS, and a working factorization scheme has been devised which subtracts the soft gluon divergence present at NLO. We report our recently published work in which we make the first comparisons of the NLO DIS total cross sections to HERA data. The non-perturbative initial condition to BK evolution is fixed by fitting the HERA reduced cross section data. As the NLO results for the DIS total cross section are currently available only in the massless quark limit, we also fit a light-quark-only cross section constructed with a parametrization of published total and heavy quark data. We find an excellent description of the HERA data. Since the full NLO BK equation is computationally expensive, we use a number of beyond LO prescriptions for the evolution that include most important higher order corrections enhanced by large transverse logarithms, including the recent version of the equation formulated in terms of the target momentum fraction.
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details necessary to perform the QCD scale evolution and cross section calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا