No Arabic abstract
There are eighteen possibly existing $D^{(*)} bar D^{(*)}$, $D^{(*)} bar K^{(*)}$, and $D^{(*)} D_s^{(*)-}$ hadronic molecular states. We construct their corresponding interpolating currents, and calculate their masses and decay constants using QCD sum rules. Based on these results, we calculate their relative production rates in $B$ and $B^*$ decays through the current algebra, and calculate their relative branching ratios through the Fierz rearrangement, as summarized in Table III. Our results support the interpretations of the $X(3872)$, $Z_c(3900)$, $Z_c(4020)$, and $X_0(2900)$ as the molecular states $D bar D^*$ of $J^{PC} = 1^{++}$, $D bar D^*$ of $J^{PC} = 1^{+-}$, $D^* bar D^*$ of $J^{PC} = 1^{+-}$, and $D^* bar K^*$ of $J^P = 0^{+}$, respectively. Our results also suggest that the $Z_{cs}(3985)$, $Z_{cs}(4000)$, and $Z_{cs}(4220)$ are strange partners of the $X(3872)$, $Z_c(3900)$, and $Z_c(4020)$, respectively. In the calculations we estimate the lifetime of a weakly-coupled composite particle $A = |BCrangle$ to be $1/t_A approx 1/t_B + 1/t_C + Gamma_{A to BC} + cdots$, with $cdots$ partial widths of other possible decay channels.
Rare hadronic B-meson decays allow us to study CP violation. The class of B decays final states containing two vector mesons provides a rich set of angular correlation observables to study. This article reviews some of the recent experimental results from the BaBar and Belle collaborations.
We discuss the possibility of observing a loosely bound molecular state in a B three-body hadronic decay. In particular we use the QCD sum rule approach to study a $eta^prime-pi$ molecular current. We consider an isovector-scalar $I^G J^{PC}= 1^-~0^{++}$ molecular current and we use the two-point and three-point functions to study the mass and decay width of such state. We consider the contributions of condensates up to dimension six and we work at leading order in $alpha_s$. We obtain a mass around 1.1 GeV, consistent with a loosely bound state, and a $eta^prime-pirightarrow K^+ K^-$ decay width around 10 MeV.
We report about the studies of the decay channels B- -> D0 K-, B0 -> D*- a1+ and B0 -> Ds(*)- pi+ with a sample of 62.10^6 Upsilon(4S) decays into B meson pairs collected with the BaBar detector at the PEP II asymmetric e+ e- collider.
We present an analysis of non-leptonic B decays in the minimally flavour-violating MSSM with large tan(beta). We relate the Wilson coefficients of the relevant hadronic scalar operators to leptonic observables, showing that the present limits on the Bs->mu+ mu- and B+->tau nu_tau branching fractions exclude any visible effect in hadronic decays. We study the transverse helicity amplitudes of B->VV decays, which exhibit an enhanced sensitivity to the scalar operators, showing that even though an order one modification relative to the SM is not excluded in some of these amplitudes, they are too small to be detected at B factories.
I report recent measurements in b-hadron decays reconstructed in the full data set of sqrt{s} = 1.96 TeV proton-antiproton collisions collected by the CDF experiment at the Tevatron. These include the final CDF results on: measurements of CP asymmetries in two-body charmless decays of the Bd, Bs, and Lambda^0_b hadrons; bounds on the Bs mixing phase and on the decay width difference of Bs mass eigenstates; and updated measurements of branching ratios of Bs->Jpsi Phi and Bs->Ds(*)Ds(*) decays. All measurements are among the most precise from a single experiment and in agreement with the standard model predictions.