Do you want to publish a course? Click here

RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs

84   0   0.0 ( 0 )
 Added by Zhiwei Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although 3D Convolutional Neural Networks are essential for most learning based applications involving dense 3D data, their applicability is limited due to excessive memory and computational requirements. Compressing such networks by pruning therefore becomes highly desirable. However, pruning 3D CNNs is largely unexplored possibly because of the complex nature of typical pruning algorithms that embeds pruning into an iterative optimization paradigm. In this work, we introduce a Resource Aware Neuron Pruning (RANP) algorithm that prunes 3D CNNs at initialization to high sparsity levels. Specifically, the core idea is to obtain an importance score for each neuron based on their sensitivity to the loss function. This neuron importance is then reweighted according to the neuron resource consumption related to FLOPs or memory. We demonstrate the effectiveness of our pruning method on 3D semantic segmentation with widely used 3D-UNets on ShapeNet and BraTS18 datasets, video classification with MobileNetV2 and I3D on UCF101 dataset, and two-view stereo matching with Pyramid Stereo Matching (PSM) network on SceneFlow dataset. In these experiments, our RANP leads to roughly 50%-95% reduction in FLOPs and 35%-80% reduction in memory with negligible loss in accuracy compared to the unpruned networks. This significantly reduces the computational resources required to train 3D CNNs. The pruned network obtained by our algorithm can also be easily scaled up and transferred to another dataset for training.



rate research

Read More

Although 3D Convolutional Neural Networks (CNNs) are essential for most learning based applications involving dense 3D data, their applicability is limited due to excessive memory and computational requirements. Compressing such networks by pruning therefore becomes highly desirable. However, pruning 3D CNNs is largely unexplored possibly because of the complex nature of typical pruning algorithms that embeds pruning into an iterative optimization paradigm. In this work, we introduce a Resource Aware Neuron Pruning (RANP) algorithm that prunes 3D CNNs at initialization to high sparsity levels. Specifically, the core idea is to obtain an importance score for each neuron based on their sensitivity to the loss function. This neuron importance is then reweighted according to the neuron resource consumption related to FLOPs or memory. We demonstrate the effectiveness of our pruning method on 3D semantic segmentation with widely used 3D-UNets on ShapeNet and BraTS18 as well as on video classification with MobileNetV2 and I3D on UCF101 dataset. In these experiments, our RANP leads to roughly 50-95 reduction in FLOPs and 35-80 reduction in memory with negligible loss in accuracy compared to the unpruned networks. This significantly reduces the computational resources required to train 3D CNNs. The pruned network obtained by our algorithm can also be easily scaled up and transferred to another dataset for training.
259 - Haitao Mao , Xu Chen , Qiang Fu 2021
Initialization plays a critical role in the training of deep neural networks (DNN). Existing initialization strategies mainly focus on stabilizing the training process to mitigate gradient vanish/explosion problems. However, these initialization methods are lacking in consideration about how to enhance generalization ability. The Information Bottleneck (IB) theory is a well-known understanding framework to provide an explanation about the generalization of DNN. Guided by the insights provided by IB theory, we design two criteria for better initializing DNN. And we further design a neuron campaign initialization algorithm to efficiently select a good initialization for a neural network on a given dataset. The experiments on MNIST dataset show that our method can lead to a better generalization performance with faster convergence.
Parameters of recent neural networks require a huge amount of memory. These parameters are used by neural networks to perform machine learning tasks when processing inputs. To speed up inference, we develop Partition Pruning, an innovative scheme to reduce the parameters used while taking into consideration parallelization. We evaluated the performance and energy consumption of parallel inference of partitioned models, which showed a 7.72x speed up of performance and a 2.73x reduction in the energy used for computing pruned layers of TinyVGG16 in comparison to running the unpruned model on a single accelerator. In addition, our method showed a limited reduction some numbers in accuracy while partitioning fully connected layers.
Modern 3D human pose estimation techniques rely on deep networks, which require large amounts of training data. While weakly-supervised methods require less supervision, by utilizing 2D poses or multi-view imagery without annotations, they still need a sufficiently large set of samples with 3D annotations for learning to succeed. In this paper, we propose to overcome this problem by learning a geometry-aware body representation from multi-view images without annotations. To this end, we use an encoder-decoder that predicts an image from one viewpoint given an image from another viewpoint. Because this representation encodes 3D geometry, using it in a semi-supervised setting makes it easier to learn a mapping from it to 3D human pose. As evidenced by our experiments, our approach significantly outperforms fully-supervised methods given the same amount of labeled data, and improves over other semi-supervised methods while using as little as 1% of the labeled data.
Most neural network pruning methods, such as filter-level and layer-level prunings, prune the network model along one dimension (depth, width, or resolution) solely to meet a computational budget. However, such a pruning policy often leads to excessive reduction of that dimension, thus inducing a huge accuracy loss. To alleviate this issue, we argue that pruning should be conducted along three dimensions comprehensively. For this purpose, our pruning framework formulates pruning as an optimization problem. Specifically, it first casts the relationships between a certain models accuracy and depth/width/resolution into a polynomial regression and then maximizes the polynomial to acquire the optimal values for the three dimensions. Finally, the model is pruned along the three optimal dimensions accordingly. In this framework, since collecting too much data for training the regression is very time-costly, we propose two approaches to lower the cost: 1) specializing the polynomial to ensure an accurate regression even with less training data; 2) employing iterative pruning and fine-tuning to collect the data faster. Extensive experiments show that our proposed algorithm surpasses state-of-the-art pruning algorithms and even neural architecture search-based algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا