Kerr/CFT from phase space formalism


Abstract in English

Attempts to find black hole microstates using the Hamiltonian phase space approach have been made on the Schwarzschild spacetime. Since the Schwarzschild spacetime is also in the larger family of the Kerr spacetimes, and both are asymptotically flat, the Kerr black hole is a good option for the method development. The Kerr black hole is a spinning one. We perform this analysis on the Kerr spacetime and we obtain promising results using the covariant phase space analysis. Although we have forced ourselves to use the Bondi fall-off conditions, we find the gauge degrees of freedom that could be good candidates for the black hole microstates. The charge algebra on the boundary could be a Virasoro algebra that has a different central term than the Schwarzschild black hole. The two dimensional theory on the black hole boundary is conjectured to be conformally invariant.

Download