Deep neural networks unlocked a vast range of new applications by solving tasks of which many were previously deemed as reserved to higher human intelligence. One of the developments enabling this success was a boost in computing power provided by special purpose hardware. Further significant improvements in energy efficiency and speed require full parallelism and analog hardware, yet analogue neuron noise and its propagation, i.e. accumulation, threatens rendering such approaches inept. Here, we analyse for the first time the propagation of noise in parallel deep neural networks comprising noisy nonlinear neurons. We develop an analytical treatment for both, symmetric networks to highlight the underlying mechanisms, and networks trained with back propagation. We find that noise accumulation is generally bound, and adding additional network layers does not worsen the signal to noise ratio beyond this limit. Most importantly, noise accumulation can be suppressed entirely when neuron activation functions have a slope smaller than unity. We therefore developed the framework for noise of deep neural networks implemented in analog systems, and identify criteria allowing engineers to design noise-resilient novel neural network hardware.