Do you want to publish a course? Click here

Elliptic solutions to matrix KP hierarchy and spin generalization of elliptic Calogero-Moser model

97   0   0.0 ( 0 )
 Added by Anton Zabrodin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider solutions of the matrix KP hierarchy that are elliptic functions of the first hierarchical time $t_1=x$. It is known that poles $x_i$ and matrix residues at the poles $rho_i^{alpha beta}=a_i^{alpha}b_i^{beta}$ of such solutions as functions of the time $t_2$ move as particles of spin generalization of the elliptic Calogero-Moser model (elliptic Gibbons-Hermsen model). In this paper we establish the correspondence with the spin elliptic Calogero-Moser model for the whole matrix KP hierarchy. Namely, we show that the dynamics of poles and matrix residues of the solutions with respect to the $k$-th hierarchical time of the matrix KP hierarchy is Hamiltonian with the Hamiltonian $H_k$ obtained via an expansion of the spectral curve near the marked points. The Hamiltonians are identified with the Hamiltonians of the elliptic spin Calogero-Moser system with coordinates $x_i$ and spin degrees of freedom $a_i^{alpha}, , b_i^{beta}$.



rate research

Read More

136 - V. Prokofev , A. Zabrodin 2021
We consider solutions of the KP hierarchy which are elliptic functions of $x=t_1$. It is known that their poles as functions of $t_2$ move as particles of the elliptic Calogero-Moser model. We extend this correspondence to the level of hierarchies and find the Hamiltonian $H_k$ of the elliptic Calogero-Moser model which governs the dynamics of poles with respect to the $k$-th hierarchical time. The Hamiltonians $H_k$ are obtained as coefficients of the expansion of the spectral curve near the marked point in which the Baker-Akhiezer function has essential singularity.
323 - V. Prokofev , A. Zabrodin 2019
We consider solutions of the matrix KP hierarchy that are trigonometric functions of the first hierarchical time $t_1=x$ and establish the correspondence with the spin generalization of the trigonometric Calogero-Moser system on the level of hierarchies. Namely, the evolution of poles $x_i$ and matrix residues at the poles $a_i^{alpha}b_i^{beta}$ of the solutions with respect to the $k$-th hierarchical time of the matrix KP hierarchy is shown to be given by the Hamiltonian flow with the Hamiltonian which is a linear combination of the first $k$ higher Hamiltonians of the spin trigonometric Calogero-Moser system with coordinates $x_i$ and with spin degrees of freedom $a_i^{alpha}, , b_i^{beta}$. By considering evolution of poles according to the discrete time matrix KP hierarchy we also introduce the integrable discrete time version of the trigonometric spin Calogero-Moser system.
339 - V. Prokofev , A. Zabrodin 2021
We consider solutions of the 2D Toda lattice hierarchy which are elliptic functions of the zeroth time t_0=x. It is known that their poles as functions of t_1 move as particles of the elliptic Ruijsenaars-Schneider model. The goal of this paper is to extend this correspondence to the level of hierarchies. We show that the Hamiltonians which govern the dynamics of poles with respect to the m-th hierarchical times t_m and bar t_m of the 2D Toda lattice hierarchy are obtained from expansion of the spectral curve for the Lax matrix of the Ruijsenaars-Schneider model at the marked points.
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear $q$-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of $q$-deformation ($q$-effects) in single $q$-soliton from the simplest $tau$ function of the $q$-KP hierarchy and in multi-$q$-soliton from one-component $q$-cKP hierarchy, and their dependence of $x$ and $q$, were also presented. Finally, we observe that $q$-soliton tends to the usual soliton of the KP equation when $xto 0$ and $qto 1$, simultaneously.
With the square eigenfunctions symmetry constraint, we introduce a new extended matrix KP hierarchy and its Lax representation from the matrix KP hierarchy by adding a new $tau_B$ flow. The extended KP hierarchy contains two time series ${t_A}$ and ${tau_B}$ and eigenfunctions and adjoint eigenfunctions as components. The extended matrix KP hierarchy and its $t_A$-reduction and $tau_B$ reduction include two types of matrix KP hierarchy with self-consistent sources and two types of (1+1)-dimensional reduced matrix KP hierarchy with self-consistent sources. In particular, the first type and second type of the 2+1 AKNS equation and the Davey-Stewartson equation with self-consistent sources are deduced from the extended matrix KP hierarchy. The generalized dressing approach for solving the extended matrix KP hierarchy is proposed and some solutions are presented. The soliton solutions of two types of 2+1-dimensional AKNS equation with self-consistent sources and two types of Davey-Stewartson equation with self-consistent sources are studied.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا