Do you want to publish a course? Click here

Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning

64   0   0.0 ( 0 )
 Added by Thomas Wendler
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Symptomatic spinal vertebral compression fractures (VCFs) often require osteoplasty treatment. A cement-like material is injected into the bone to stabilize the fracture, restore the vertebral body height and alleviate pain. Leakage is a common complication and may occur due to too much cement being injected. In this work, we propose an automated patient-specific framework that can allow physicians to calculate an upper bound of cement for the injection and estimate the optimal outcome of osteoplasty. The framework uses the patient CT scan and the fractured vertebra label to build a virtual healthy spine using a high-level approach. Firstly, the fractured spine is segmented with a three-step Convolution Neural Network (CNN) architecture. Next, a per-vertebra rigid registration to a healthy spine atlas restores its curvature. Finally, a GAN-based inpainting approach replaces the fractured vertebra with an estimation of its original shape. Based on this outcome, we then estimate the maximum amount of bone cement for injection. We evaluate our framework by comparing the virtual vertebrae volumes of ten patients to their healthy equivalent and report an average error of 3.88$pm$7.63%. The presented pipeline offers a first approach to a personalized automatic high-level framework for planning osteoplasty procedures.



rate research

Read More

Accurate models of patient survival probabilities provide important information to clinicians prescribing care for life-threatening and terminal ailments. A recently developed class of models - known as individual survival distributions (ISDs) - produces patient-specific survival functions that offer greater descriptive power of patient outcomes than was previously possible. Unfortunately, at the time of writing, ISD models almost universally lack uncertainty quantification. In this paper, we demonstrate that an existing method for estimating simultaneous prediction intervals from samples can easily be adapted for patient-specific survival curve analysis and yields accurate results. Furthermore, we introduce both a modification to the existing method and a novel method for estimating simultaneous prediction intervals and show that they offer competitive performance. It is worth emphasizing that these methods are not limited to survival analysis and can be applied in any context in which sampling the distribution of interest is tractable. Code is available at https://github.com/ssokota/spie .
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices. However, previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data. To mitigate this concern, we propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset. At the algorithm level of the proposed framework, a systematic weight pruning technique based on the alternating direction method of multipliers (ADMM) is designed to iteratively solve the pattern-based pruning problem for each layer with randomly generated synthetic data. In addition, corresponding optimizations at the compiler level are leveraged for inference accelerations on devices. With the proposed framework, users could avoid the time-consuming pruning process for non-experts and directly benefit from compressed models. Experimental results show that the proposed framework outperforms three state-of-art end-to-end DNN frameworks, i.e., TensorFlow-Lite, TVM, and MNN, with speedup up to 4.2X, 2.5X, and 2.0X, respectively, with almost no accuracy loss, while preserving data privacy.
Temporal relational data, perhaps the most commonly used data type in industrial machine learning applications, needs labor-intensive feature engineering and data analyzing for giving precise model predictions. An automatic machine learning framework is needed to ease the manual efforts in fine-tuning the models so that the experts can focus more on other problems that really need humans engagement such as problem definition, deployment, and business services. However, there are three main challenges for building automatic solutions for temporal relational data: 1) how to effectively and automatically mining useful information from the multiple tables and the relations from them? 2) how to be self-adjustable to control the time and memory consumption within a certain budget? and 3) how to give generic solutions to a wide range of tasks? In this work, we propose our solution that successfully addresses the above issues in an end-to-end automatic way. The proposed framework, AutoSmart, is the winning solution to the KDD Cup 2019 of the AutoML Track, which is one of the largest AutoML competition to date (860 teams with around 4,955 submissions). The framework includes automatic data processing, table merging, feature engineering, and model tuning, with a time&memory controller for efficiently and automatically formulating the models. The proposed framework outperforms the baseline solution significantly on several datasets in various domains.
To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and generally fall into two categories, i.e., static regularization-based pruning and dynamic regularization-based pruning. However, the former method currently suffers either complex workloads or accuracy degradation, while the latter one takes a long time to tune the parameters to achieve the desired pruning rate without accuracy loss. In this paper, we propose a unified DNN weight pruning framework with dynamically updated regularization terms bounded by the designated constraint, which can generate both non-structured sparsity and different kinds of structured sparsity. We also extend our method to an integrated framework for the combination of different DNN compression tasks.
In recent years, neural networks have demonstrated an outstanding ability to achieve complex learning tasks across various domains. However, they suffer from the catastrophic forgetting problem when they face a sequence of learning tasks, where they forget the old ones as they learn new tasks. This problem is also highly related to the stability-plasticity dilemma. The more plastic the network, the easier it can learn new tasks, but the faster it also forgets previous ones. Conversely, a stable network cannot learn new tasks as fast as a very plastic network. However, it is more reliable to preserve the knowledge it has learned from the previous tasks. Several solutions have been proposed to overcome the forgetting problem by making the neural network parameters more stable, and some of them have mentioned the significance of dropout in continual learning. However, their relationship has not been sufficiently studied yet. In this paper, we investigate this relationship and show that a stable network with dropout learns a gating mechanism such that for different tasks, different paths of the network are active. Our experiments show that the stability achieved by this implicit gating plays a very critical role in leading to performance comparable to or better than other involved continual learning algorithms to overcome catastrophic forgetting.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا