Conway-normalized Alexander polynomial of ribbon knots depend only on their ribbon diagrams. Here ribbon diagram means a ribbon spanning the ribbon knot marked with the information of singularities. We further give an algorithm to calculate Alexander polynomials of ribbon knots from their ribbon diagrams.
We define a family of virtual knots generalizing the classical twist knots. We develop a recursive formula for the Alexander polynomial $Delta_0$ (as defined by Silver and Williams) of these virtual twist knots. These results are applied to provide evidence for a conjecture that the odd writhe of a virtual knot can be obtained from $Delta_0$.
We show that if a link J in the 3-sphere is homotopy ribbon concordant to a link L then the Alexander polynomial of L divides the Alexander polynomial of J.
We study Kauffmans model of folded ribbon knots: knots made of a thin strip of paper folded flat in the plane. The folded ribbonlength is the length to width ratio of such a ribbon knot. We give upper bounds on the folded ribbonlength of 2-bridge, $(2,p)$ torus, twist, and pretzel knots, and these upper bounds turn out to be linear in crossing number. We give a new way to fold $(p,q)$ torus knots, and show that their folded ribbonlength is bounded above by $p+q$. This means, for example, that the trefoil knot can be constructed with a folded ribbonlength of 5. We then show that any $(p,q)$ torus knot $K$ has a constant $c>0$, such that the folded ribbonlength is bounded above by $ccdot Cr(K)^{1/2}$, providing an example of an upper bound on folded ribbonlength that is sub-linear in crossing number.
We give a new interpretation of the Alexander polynomial $Delta_0$ for virtual knots due to Sawollek and Silver and Williams, and use it to show that, for any virtual knot, $Delta_0$ determines the writhe polynomial of Cheng and Gao (equivalently, Kauffmans affine index polynomial). We also use it to define a second-order writhe polynomial, and give some applications.
The fusion number of a ribbon knot is the minimal number of 1-handles needed to construct a ribbon disk. The strong homotopy fusion number of a ribbon knot is the minimal number of 2-handles in a handle decomposition of a ribbon disk complement. We demonstrate that these invariants behave completely differently under cabling by showing that the (p,1)-cable of any ribbon knot with fusion number one has strong homotopy fusion number one and fusion number p. Our main tools are Juhasz-Miller-Zemkes bound on fusion number coming from the torsion order of knot Floer homology and Hanselman-Watsons cabling formula for immersed curves.