Do you want to publish a course? Click here

New constraints on radiative seesaw models from IceCube and other neutrino detectors

78   0   0.0 ( 0 )
 Added by Michael Klasen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dark matter (DM) scattering and its subsequent capture in the Sun can boost the local relic density, leading to an enhanced neutrino flux from DM annihilations that is in principle detectable at neutrino telescopes. We calculate the event rates expected for a radiative seesaw model containing both scalar triplet and singlet-doublet fermion DM candidates. In the case of scalar DM, the absence of a spin dependent scattering on nuclei results in a low capture rate in the Sun, which is reflected in an event rate of less than one per year in the current IceCube configuration with 86 strings. For singlet-doublet fermion DM, there is a spin dependent scattering process next to the spin independent one, which significantly boosts the event rate and thus makes indirect detection competitive with respect to the direct detection limits imposed by PICO-60. Due to a correlation between both scattering processes, the limits on the spin independent cross section set by XENON1T exclude also parts of the parameter space that can be probed at IceCube. Previously obtained limits by ANTARES, IceCube and Super-Kamiokande from the Sun and the Galactic Center are shown to be much weaker.



rate research

Read More

We study the framework of $U(1)_X$ models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas and derive limits on a variety of $U(1)_X$ models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light $Z^prime$ models.
We quantify the effect of gauge bosons from a weakly coupled lepton flavor dependent $U(1)$ interaction on the matter background in the evolution of solar, atmospheric, reactor and long-baseline accelerator neutrinos in the global analysis of oscillation data. The analysis is performed for interaction lengths ranging from the Sun-Earth distance to effective contact neutrino interactions. We survey $sim 10000$ set of models characterized by the six relevant fermion $U(1)$ charges and find that in all cases, constraints on the coupling and mass of the $Z$ can be derived. We also find that about 5% of the $U(1)$ model charges lead to a viable LMA-D solution but this is only possible in the contact interaction limit. We explicitly quantify the constraints for a variety of models including $U(1)_{B-3L_e}$, $U(1)_{B-3L_mu}$, $U(1)_{B-3L_tau}$, $U(1)_{B-frac{3}{2}(L_mu+L_tau)}$, $U(1)_{L_e-L_mu}$, $U(1)_{L_e-L_tau}$, $U(1)_{L_e-frac{1}{2}(L_mu+L_tau)}$. We compare the constraints imposed by our oscillation analysis with the strongest bounds from fifth force searches, violation of equivalence principle as well as bounds from scattering experiments and white dwarf cooling. Our results show that generically, the oscillation analysis improves over the existing bounds from gravity tests for $Z$ lighter than $sim 10^{-8} to 10^{-11}$ eV depending on the specific couplings. In the contact interaction limit, we find that for most models listed above there are values of $g$ and $M_{Z}$ for which the oscillation analysis provides constraints beyond those imposed by laboratory experiments. Finally we illustrate the range of $Z$ and couplings leading to a viable LMA-D solution for two sets of models.
187 - L. Dorame , S. Morisi , E. Peinado 2012
A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). One of these implies in a lower bound on the effective neutrinoless double beta mass parameter, even for normal hierarchy neutrinos. Here we propose a new model based on the S4 flavor symmetry that leads to the new neutrino mass sum-rule and discuss how to generate a nonzero value for the reactor mixing angle indicated by recent experiments, and the resulting correlation with the solar mixing angle.
The recent IceCube publication claims the observation of cosmic neutrinos with energies down to $sim 10$ TeV, reinforcing the growing evidence that the neutrino flux in the 10-100 TeV range is unexpectedly large. Any conceivable source of these neutrinos must also produce a $gamma$-ray flux which degrades in energy en route to the Earth and contributes to the extragalactic $gamma$-ray background measured by the Fermi satellite. In a quantitative multimessenger analysis, featuring minimalistic assumptions, we find a $geq 3sigma$ tension in the data, reaching $sim 5sigma$ for cosmic neutrinos extended down to $sim 1$ TeV, interpreted as evidence for a population of hidden cosmic-ray accelerators.
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the recently released IceCube data on atmospheric neutrino fluxes under the assumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with different strengths to the gravitational field. In this case we find that the VEP parameters times the local gravitational potential at Earth can be constrained at the level of $10^{-27}$. We show that the constraints from atmospheric neutrinos strongly depend on the assumption that the neutrino eigenstates interacting diagonally with the gravitational field coincide with the mass eigenstates, which is not textit{a priori} justified: this is particularly clear in the case that the basis of diagonal gravitational interaction coincide with the flavor basis, which cannot be constrained by the observation of atmospheric neutrinos. Finally, we quantitatively study the effect of a VEP on the flavor composition of the astrophysical neutrinos, stressing again the interplay with the basis in which the VEP is diagonal: we find that for some choices of such basis the flavor ratio measured by IceCube can significantly change.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا