Do you want to publish a course? Click here

In-plane selective area InSb-Al nanowire quantum networks

152   0   0.0 ( 0 )
 Added by Di Xu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strong spin-orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum computer and require a network of nanowires. Here, we develop an in-plane selective-area growth technique for InSb-Al semiconductor-superconductor nanowire networks with excellent quantum transport properties. Defect-free transport channels in InSb nanowire networks are realized on insulating, but heavily mismatched InP substrates by 1) full relaxation of the lattice mismatch at the nanowire/substrate interface on a (111)B substrate orientation, 2) nucleation of a complete network from a single nucleation site, which is accomplished by optimizing the surface diffusion length of the adatoms. Essential quantum transport phenomena for topological quantum computing are demonstrated in these structures including phase-coherent transport up to 10 $mu$m and a hard superconducting gap accompanied by 2$e$-periodic Coulomb oscillations with an Al-based Cooper pair island integrated in the nanowire network.



rate research

Read More

Majorana Zero Modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offers a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in all contact pairs of the epitaxial InSb nanowire networks; the hallmark of ballistic transport behavior.
We report electron transport studies on InSb-Al hybrid semiconductor-superconductor nanowire devices. Tunnelling spectroscopy is used to measure the evolution of subgap states while varying magnetic field and voltages applied to various nearby gates. At magnetic fields between 0.7 and 0.9 T, the differential conductance contains large zero bias peaks (ZBPs) whose height reaches values on the order 2e2/h. We investigate these ZBPs for large ranges of gate voltages in different devices. We discuss possible interpretations in terms of disorder-induced subgap states, Andreev bound states and Majorana zero modes.
Signatures of Majorana zero modes (MZMs), which are the building blocks for fault-tolerant topological quantum computing, have been observed in semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such as InSb and InAs NWs with proximity-induced superconductivity. Realizing topological superconductivity and MZMs in this most widely-studied platform also requires eliminating spin degeneracy, which is realized by applying a magnetic field to induce a helical gap. However, the applied field can adversely impact the induced superconducting state in the NWs and also places geometric restrictions on the device, which can affect scaling of future MZM-based quantum registers. These challenges could be circumvented by integrating magnetic elements with the NWs. With this motivation, in this work we report the first experimental investigation of spin transport across InSb NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe signatures of spin polarization and spin-dependent transport in the quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic gating tunes the observed magnetic signal and also reveals a transport regime where the device acts as a spin filter. These results open an avenue towards developing MZM devices in which spin degeneracy is lifted locally, without the need of an applied magnetic field. They also provide a path for realizing spin-based devices that leverage spin-orbital states in quantum wires.
We have measured the Zeeman splitting of quantum levels in few-electron quantum dots (QDs) formed in narrow bandgap InSb nanowires via the Schottky barriers at the contacts under application of different spatially orientated magnetic fields. The effective g-factor tensor extracted from the measurements is strongly anisotropic and level-dependent, which can be attributed to the presence of strong spin-orbit interaction (SOI) and asymmetric quantum confinement potentials in the QDs. We have demonstrated a successful determination of the principal values and the principal axis orientations of the g-factor tensors in an InSb nanowire QD by the measurements under rotations of a magnetic field in the three orthogonal planes. We also examine the magnetic-field evolution of the excitation spectra in an InSb nanowire QD and extract a SOI strength of $Delta_{so}sim 180$ $mu$eV from an avoided level crossing between a ground state and its neighboring first excited state in the QD.
We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. Three bottom gates are used to locally deplete the nanowire creating a ballistic quantum point contact with only a few conducting channels. In a magnetic field, the Zeeman splitting of the corresponding 1D subbands is revealed by the emergence of conductance plateaus at multiples of $e^2$/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear leaving a first conductance step of 2$e^2/h$, which is indicative of a remarkable two-fold subband degeneracy that can persist up to several Tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the subband structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا